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Abstract This paper proposes novel methods for learning subspaces using dimension-incremental SVD and ran-

dom sampling. The most intensive computation in the linear subspace methods is the reduction of dimensionality

of the feature space by the eigen decomposition or singular value decomposition. In the present methods, the sub-

spaces are learned by updating their orthonormal basis sets with random increment of the dimension of the feature

space. The subspace learning progresses with the similarity measurement of test samples until their classification is

completed. This strategy can reduce the computational expense without critical loss of recognition rate especially

for the high-dimensional data, and the classification results can be assessed by observing the convergence of the

similarity measures. The performance of the present methods was experimentally verified using face recognition

datasets.
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1. Introduction

I present a substantial improvement in computation of the

subspace methods by an incremental approach to the dimen-

sion of the feature space. The subspace methods [8], [12] have

provided us effective techniques for applications such as op-

tical character recognition, face recognition, and so on. The

reduction in the computational costs of the subspace meth-

ods contributes to their applicable advances in the technol-

ogy for large-scale and high-dimensional data.

In the linear subspace methods, the classes of given train-

ing samples are basically represented as linear subspaces

spanned by the principal components of the samples in

the Euclidean feature space. After learning the subspaces,

test samples, i.e., queries, are classified into the classes ac-

cording to (dis)similarity measures between the classes and

the queries calculated with the principal components of the

learned subspaces. The subspace learning by the principal

component analysis is known as the reduction of dimension-

ality, of which computational expense is quite significant due

to high dimensionality of the feature space. In particular,

appearance-based vision techniques sometimes have to treat

images as intolerably high-dimensional feature vectors with

the pixel values in practice.

A possible solution to reduce the computational cost of the

subspace learning due to the high dimensionality is incre-

mental learning with respect to the dimension. An iterative

algorithm that updates the principal components referring

to the feature vectors of the training samples from low to

high dimensionality can be computationally cost-effective if

it can be terminated at an early iterative stage for the clas-

sification of the queries. The subspace learning with the

dimensional increment of the feature space can be achieved

by application of the incremental singular value decomposi-

tion (SVD) [1], [3], [4], [10], [11]. If randomly chosen dimen-

sions are appended to the low-dimensional feature space, the

(dis)similarity measures between the learned subspaces and

the queries in a low-dimensional feature space are expected

to approximate those between them in the high-dimensional

feature space due to the same principle as the random pro-

jection [2], [5].

In this paper, I first review the traditional linear subspace

methods performed in a low-dimensional feature space. Sec-

ond, I propose classification methods that measure the sim-

ilarity in low-dimensional feature spaces constructed by di-

mension increment. I call the subspace methods with ran-

dom increment of the dimension the Monte Carlo subspace

methods. Finally, I apply the Monte Carlo subspace meth-

ods to the appearance-based face recognition to show the

cost effectivity.
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2. Linear Subspace Methods in Low-
Dimensional Feature Space

Let {Cl}c
l=1 be a collection of classes, from each of which

nl training samples are given as d-dimensional feature vec-

tors. A data matrix of the class Cl is defined as the matrix

with the nl feature vectors in its columns.

Xl
d×nl

:=
[

x1 . . . xnl

]
, l = 1, . . . , c (1)

The linear subspace Sl := spanXl⊂=Ed of the class Cl is the

image space of the data matrix Xl in the d-dimensional Eu-

clidean feature space Ed. A fundamental approach to de-

termine the basis of the subspace Sl is the SVD1) of the

data matrix as Xl = UlKlV
>
l . Here, Kl is a kl × kl di-

agonal matrix with nonnegative diagonal elements, i.e., the

singular values, arranged in decreasing order. Ul and Vl are

respectively d × kl and nl × kl matrices with orthonormal

column vectors spanning the kl-dimensional subspace Sl and

a kl-dimensional subspace S∗
l := spanX>

l ⊂
=Enl , satisfying

U>
l Ul = V>

l Vl = I.

Given the feature vector q ∈ Ed of a query whose class is

to be identified, most of the subspace methods geometrically

evaluate the (dis)similarity between the subspaces {Sl}c
l=1

and the query q in the feature space Ed. The CLAFIC

method [12], for example, measures the similarity as the

squared l2-norm of the orthogonal projection of the normal-

ized query q/||q|| onto a subspace spanU.

CLAFIC(U,q) :=

∣∣∣∣∣∣U> q

||q||

∣∣∣∣∣∣2 =
q>UU>q

q>q
(2)

Here, U is composed of the tl first column vectors in Ul.

One can find antecedent work, such as [9], to fix the trun-

cated dimension tl of the subspace Sl. The (dis)similarity

measurement, however, requires the computation with the

high-dimensional vectors in Ed.

I approach this problem by choosing the basis of the fea-

ture space itself instead of the bases of the subspaces. A

row of the data matrix Xl corresponds to a coordinate of

the feature space. Let X̃l be a low-dimensional data matrix

consisting of r row vectors chosen from the row vectors in

the data matrix Xl, and let q̃ ∈ Er be a low-dimensional

feature vector of the query with r components chosen from

q in the same manner. Then, the subspace defined as the

image space of X̃l, i.e., S̃l = span X̃l⊂=Er, is the orthogonal

projection of the subspace Sl = spanXl⊂=Ed onto the chosen

r-dimensional feature space Er. The basis of S̃l is obtained

by SVD of X̃l as X̃l = ŨlK̃lṼ
>
l . Here, Ũl and Ṽl are re-

spectively r× k̃l and nl× k̃l matrices if the dimension of S̃l is

1)：The compact SVD is mainly used to illustrate my method although

the eigen decomposition is also available in the same way.

k̃l := dim S̃l = rank X̃l. The (dis)similarity between S̃l and q̃

in the low-dimensional feature space Er can be measured, for

example, by the CLAFIC method as CLAFIC(Ũ, q̃). Here,

Ũ is composed of the t̃l first column vectors in Ũl. If the

similarity measured in the low-dimensional feature space ap-

proximates that measured in the d-dimensional feature space,

the query can be classified without referring to all features

of the training samples.

3. Dimension Incremental Subspace Meth-
ods

3. 1 Framework

Assuming this row-incremental update algorithm, i.e., the

row-incremental SVD (RiSVD), I describe a common frame-

work of the dimension-incremental subspace methods in Al-

gorithm 1.

Algorithm 1 Classification by dimension-incremental sub-

space learning

Input: the row-accessible training data matrices { Xl
d×nl

}c
l=1,

and the query q ∈ Ed;

Output: the similarity measures {g̃l}c
l=1, and the learned singu-

lar value components { Ũl
r×k̃l

}c
l=1, { K̃l

k̃l×k̃l

}c
l=1 and { Ṽl

nl×k̃l

}c
l=1;

1: set q̃ to be a zero-dimensional vector;

2: for all l = 1 to c do

3: set Ũl, K̃l and Ṽl to be 0 × 0 matrices;

4: end for

5: repeat

6: choose the i-th dimension (disallow duplication);

7: append the i-th component of q to q̃;

8: for all l = 1 to c do

9: set ‰> to be the i-th row of Xl;

10: update Ũl, K̃l and Ṽl by RiSVD using ‰;

11: measure the similarity g̃l of q̃ using Ũl, K̃l and Ṽl;

12: end for

13: until arg max
l=1,...,c

g̃l is fixed.

We can avoid restoring the low-dimensional data matrix

X̃l because its SVD matrices Ũl, K̃l, and Ṽl are directly

updated with the chosen row vector ‰> from Xl. The low-

dimensional data matrix of the class Cl is implicitly stored as

X̃l = ŨlK̃lṼ
>
l although the chosen row vector ‰> is expired

after the RiSVD.

The iteration between Step 5 and Step 13 is terminated

when the class with the highest similarity is settled by the

similarity measurement such as the CLAFIC in the low-

dimensional feature space. In case of multiple queries, the

similarity measures between the classes and the queries can

be calculated simultaneously in the iteration, which is ter-

minated when the classes of all queries are identified.
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The number of rows of Ũl, i.e., the dimension r of the low-

dimensional feature space, is incremented by one after the

RiSVD while the number of its columns, i.e., the dimension

k̃l of the subspace S̃l⊂=Er, is incremented if the degeneration

of S̃l is relieved by the dimension increment of the feature

space. The subspace dimension k̃l can be increased up to

rankXl <= nl maintaining S̃l = Er, which results in ∀g̃l = 1

for any queries at the early stages. Therefore, the similarity

measurement at Step 11 may be enabled after nl iterations

or after t̃l iterations in the case using the CLAFIC method.

3. 2 Feature Selection

To perform effectively the subspace method in a low-

dimensional feature space, we need a rule for choosing the

basis of the feature space, or choosing i-th row from the data

matrix Xl at Step 6 in Algorithm 1. The choice of the di-

mension is nothing more than the selection of the features.

A few types of dimension-incremental subspace methods are

derived by different rules of the feature selection.

a ) Type-I: Monte Carlo Subspace Method by Equally

Random Choice

If we do not have a priori knowledge about which rows

store the important features for the similarity measures, ran-

dom choice may provide us with likely measures. This strat-

egy is well known as the Monte Carlo method. One of the

advantages of the random choice is that the reliability of the

classification can be tested by repeated trials using random

sequences.

b ) Type-II: Monte Carlo Subspace Method by Query-

Dependent Random Choice

Since large components of the query contributes to the

similarity measures, one would expect their faster conver-

gence when the feature is chosen depending on the query. I

design such a fast method regarding the magnitude of the

query component as relative frequency of the choice. The

larger query components are more likely to be chosen by this

method.

c ) Type-III: Query-Dependent Deterministic Choice

One can also consider the non-random choice of the di-

mension. For the same reason of the type-II, the dimension

is chosen in decreasing order of the magnitude of the query

component. Since this method does not take advantage of

the random choice, the classification results cannot be as-

sessed by repeated trials.

3. 3 Row-Incremental SVD

Algorithm 2 describes the RiSVD for the dimension incre-

ment of the feature space. The RiSVD is dual to the column-

incremental SVD [1], [3], [4], [10], [11] used for the data incre-

ment. Algorithm 2 ensures reconstructivity

[
ŨK̃Ṽ>

‰>

]
= ŨnewK̃newṼ>

new,

and inductive orthonormality

Ũ>
newŨnew = Ṽ>

newṼnew = I if Ũ>Ũ = Ṽ>Ṽ = I.

3. 4 Flop Count

In the usual linear subspace methods, the cost of comput-

ing the subspace basis for a class Cl by the SVD of the d×nl

training data matrix Xl is O((d + nl)min2(d, nl)) ≈ O(dn2
l )

(d À nl) flops [4], [7], and the similarity measurement, by

the CLAFIC for example, costs O(dtl) a class. On the other

hand, if Algorithm 1 requires rmax iterations, the SVD of

B in Algorithm 2 costs O(rmaxk̃
3
l ), and the matrix mul-

tiplication at Step 12 or 18 and at Step 14 or 20 costs

Algorithm 2 Row-incremental SVD

Input: Ũ
r×k̃

, K̃
k̃×k̃

, Ṽ
n×k̃

(r >= k̃) and ‰ ∈ En;

Output: Ũnew, K̃new and Ṽnew;

1: if r = 0 then

2: Ũnew
1×1

←
[

1
]
;

3: K̃new
1×1

←
[

||‰||
]
;

4: Ṽnew
n×1

←
[

‰

||‰||

]
;

5: end if

6: ” ← Ṽ>‰;

7: p ← ‰ − Ṽ”;

8: p ← ||p||;
9: if p |= 0 then

10: B
(k̃+1)×(k̃+1)

←
[

K̃ 0

”> p

]
;

11: do singular value decomposition of B to obtain

UB
(k̃+1)×(k̃+1)

, KB
(k̃+1)×(k̃+1)

and VB
(k̃+1)×(k̃+1)

such that

UBKBV>
B = B and U>

BUB = V>
BVB = I

(k̃+1)×(k̃+1)

;

12: Ũnew
(r+1)×(k̃+1)

←
[

Ũ 0

0> 1

]
UB;

13: K̃new
(k̃+1)×(k̃+1)

← KB;

14: Ṽnew
n×(k̃+1)

←
[

Ṽ
p

p

]
VB;

15: else

16: B
(k̃+1)×k̃

←
[

K̃

”>

]
;

17: do singular value decomposition of B to obtain

UB
(k̃+1)×k̃

, KB
k̃×k̃

and VB
k̃×k̃

such that

UBKBV>
B = B and U>

BUB = V>
BVB = I

k̃×k̃

;

18: Ũnew
(r+1)×k̃

←
[

Ũ 0

0> 1

]
UB;

19: K̃new
k̃×k̃

← KB;

20: Ṽnew
n×k̃

← Ṽ
n×k̃

VB
k̃×k̃

;

21: end if
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Fig. 1 Similarity measures vs dimension of feature space by the type-I Monte Carlo sub-

space method. In all three graphs, the horizontal axis is the iteration count r, or

the reduced dimension of the feature space. (a) An example of the progress of the

similarity measures. (b) Average progress of the similarity measures. The error

bar indicates the standard deviation σ. (c) Evolution of σ with respect to r shows

the r−
1
2 -asymptotics (the oblique dashed lines).

O(r2
maxk̃2

l + rmaxnlk̃
2
l ). The similarity measure can be done

in O(r2
maxt̃l) flops. Since the total cost is approximately

O(r2
max), the dimension-incremental subspace methods can

reduce the computation time if it completes the classifica-

tion in rmax ∼ O(d
1
2 ) iterations. Besides, Algorithm 1 can

save memory space by out-of-core computation because the

input data matrices may be row-accessible.

4. Experiments

The cost-effectiveness for high-dimensional data classifica-

tion is demonstrated by the appearance-based image recogni-

tion using a pre-cropped version of the UMIST face database

[6]. A partial set of face images consisting of nl = 8 images

each of 20 individuals is used as the training dataset of a

class, and the remaining images are used as the queries. The

dimension of the feature space is d = 112 × 92 = 10304.

Figure 1(a) shows an example of the progress of the simi-

larity measures g̃l = CLAFIC(Ũl,q) between the 20 classes

and a query by the type-I method. The significance of the

similarity between the correct class and the query becomes

apparent as the dimension of the low-dimensional feature

space grows. Figure 1(b) shows the average progress with

over 500 trials. Remarkably, only a few dozen times of di-

mension increment are sufficient to clarify the correct class

for the query. The computation time is reduced to 18% of

the usual CLAFIC method in case of rmax = 50 and to 56%

in case of rmax = 100. Although calculating the precise sim-

ilarity requires numerous iterations because the similarity

measures slowly converge with order 1/2 as shown in Fig.

1(c), the class with the highest similarity can be determined

by the measurement in the low-dimensional feature spaces.

The appearance-based image recognition without any nor-

malisation can be highly dependent on the positions of target

objects in the images. It is well-known that the Fourier am-

plitude, or the power spectrum, is invariant under any spatial

shift of the images. I have tested the dimension-incremental

subspace methods for the Fourier transform of the UMIST

images. As shown in Fig. 2(a), the type-I method could

find a correct class in average. However, the similarity mea-

sures have large deviations, indicating low reliablity of the

classification results at low dimensions. Since every simi-

larity g̃l is greater than about 0.92, the differences between

the similarity measures are relatively small. Nevertheless,

the type-II method could identify the correct class at a few

tens of dimensions as shown in Fig. 2(b). This implies that

the query-dependent random choice is effective for improving

the precision of the similarity measures at low dimensions.

Among the present methods, the type-III method shows the

fastest convergence as shown in Fig. 2(c).

5. Concluding Remarks

The dimension-incremental approach to the subspace

learning allows us to measure the similarity between the

classes and queries in low-dimensional feature spaces. The

present methods achieve considerable reduction in compu-

tation time of the classification, which makes tractable the

pattern recognition for large dimensional data. Another dis-

tinctive feature of the present methods is that we can observe

the progress of the similarity measures with respect to the

dimension, and evaluate the reliability of the classification

results. The further research on the Monte Carlo scheme

for the dimensionality reduction should be pursued from the

viewpoint of the random projection [2], [5].
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