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Abstract  There is a growing interest in multi-dimensional image processing, such as medical volume image processing, hyperspectral 
image processing. In this paper, we propose a novel approach called generalized N-dimensional principal component analysis (GND-PCA) 
for efficient multi-dimensional data representation and modeling. In GND-PCA, the multi-dimensional data is treated as a tensor. The 
optimal subspaces on each mode are simultaneously calculated by minimizing the square error between the original tensor and the 
reconstructed tensor based on the subspace. Experiments on medical MRI dataset show that the proposed GND-PCA can represent the 
multi-dimensional data more efficiently compared to conventional PCA and recently proposed ND-PCA. 
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1. Introduction 
Principal component analysis (PCA) is an 

important technique for efficient data representation 
and modeling. PCA is an orthogonal linear transform 
that projects the data into a new coordinate system 
(subspace) with bases where the data varies the most. 
The bases are determined by the eigenvectors of the 
covariance matrix corresponding to the largest 
eigenvalues. The magnitude of the eigenvalues 
corresponds to the variance of the data along the 
eigenvector bases [1, 2]. Since the classical PCA is 
the method for 1-dimensional (1D) vector data, when 
PCA is applied to multi-dimensional data (e.g. 2D 
image or 3D volume), the multi-dimensional data 
should be initially unfolded to a long 1D vector. 
Such unfolding process will introduce several 
problems: (1) the feature vector is in high 
dimensional vector space resulting in huge 
computation cost and bad performance on 
generalization; (2) lost of spatial information. Yang 
et al proposed a new method called 2-dimensional 
principal component analysis (2D-PCA) to overcome 
the above problems [3]. This method is to calculate 
the bases in the column-mode subspace of the 2D 
image instead of finding the basis in the long 
unfolding vector subspace. Therefore, the 2D data 
can be directly used in the training without the 
unfolding vector preprocessing. 2D-PCA not only 
makes the calculation of the bases efficiently but 
also can accurately represent the 2D data, however 
its drawback is that it needs more coefficients to 

represent the 2D data than PCA because 2D PCA is a 
unilateral projection (right multiplication) scheme. 
Kong et al. proposed a generalized 2-dimensional 
PCA (G2D-PCA) [4], which is a bilateral projection 
scheme, to simultaneously calculate the basis of the 
row- and column-mode subspaces, so it can represent 
the 2D data not only accurately but efficiently. 
Recently, inspired from the work of 2D-PCA, a 
method called N-dimensional PCA (ND-PCA) was 
proposed for higher-dimensional data representation 
[5]. In ND-PCA, the higher-dimensional data is 
treated as the higher-order tensor witch is directly 
trained to obtain the bases on one-mode subspace by 
multi-linear algebra based tool called higher-order 
singular value decomposition (HOSVD) [6]. It was 
applied on the 3D facial scanning data. Since 
ND-PCA only compresses the data on one-mode 
subspace, it is also suffered from the problem that 
the data can not represented efficiently, similar to 
the problem of 2D-PCA. 

Inspired from the works of G2D-PCA and 
ND-PCA, we proposed a new method called 
generalized N-dimensional principal component 
analysis (GND-PCA). The high–dimensional data is 
treated as a series of higher-order tensors and the 
optimal subspace on each mode are simultaneously 
calculated by minimizing the square error between 
the original tensor and the reconstructed tensor 
based on the subspace with an iteration algorithm. 
Experiments on medical MRI dataset show that the 
proposed GND-PCA can represent the 
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multi-dimensional data more efficiently compared to 
the conventional PCA and ND-PCA. 

The paper is organized as follows: related works 
such as 2D-PCA, G2D-PCA and ND-PCA are briefly 
summarized in Sec.2; the proposed GND-PCA is 
presented in Sec.3; experimental results on medical 
MRI dataset and multi-angle view & illumilation 
facial dataset are presented in Sec.4; and conclusions 
are given in Sec.5. 

 

2. Related Works 
 

2.1. SVD and PCA 
 

Suppose a series of D-dimensional vectors with 
zero-mean,  are given and 

 is a
Mii ,,2,1, L=a

],,,[ 21 MaaaA L= MD× matrix, where M is the 
number of samples. PCA is based on eigenvalue 
decomposition of the covariance matrix Cov , as 
Eq.(1). 
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where Σ is a diagonal matrix corresponding of eigen 
values and W is a  matrix, whose column 
vectors are eigenvectors of Cov. The 
leading J eigenvectors, where  construct the 
subspace and the vector  can be represented 
by its coefficient vector, 
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On the other hand, a matrix MD×∈ RA  can be 

decomposed by SVD as 
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where  and  are orthogonal 
matrices.  is a diagonal matrix 
corresponding of singular values. From Eq.(2), 

DD×∈ RU MM ×∈ RV
MD×∈ RS
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It is clear that the squares of the non-zero singular 
values of A are equal to the non-zero eigenvalues of 

and the columns of U (left singular 
vectors) are eigenvectors of Cov. Thus we just need 
to apply SVD to A to get the principal orthogonal 
vectors (bases). 

CovAA =T

 

2.2. HO-SVD and ND-PCA 
 

A N-th order tensor is defined as a 
multi-array with N indices.  The space of the tensor is 

comprised by the N mode space. The tensor A can be 
unfolded to which is called as 

mode-n matrix, where 

NIII ×××∈ L21RA

)(
)(
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n

LL +− ⋅⋅×∈ RA
Nn ≤<0  . Unfolding of a 3 rd  

order tensor is shown in Fig.1.  The tensor A can be 
decomposed by the higher-order SVD (HO-SVD), which 
is also known as Tucker decomposition [6], as 
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where is a unitary matrix,  
is the core tensor, and 

nn IIn ×∈ RU )(

NIII ×××∈ L21RB n×  is the 

mode-n product. As shown in Eq.(5), can be 
rewritten as a matrix multiplication and the result C 
is also a N-th order tensor. 
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Fig.1 Example of unfolding the 3 rd  order tensor 
 

HO-SVD has been applied to ND-PCA[5] with 
applications to 3D facial scanning data, 
representation of face with multiple-modes [7,8] and 
robust face recognition[9]. In ND-PCA, the 
N-dimensional dataset are directly treated as N-th 
order tensors . In a 
similar manner described in Sec.2.1, instead of 
calculating the covariance tensor, we just need to 
construct a new tensor 

,21 NIII ×××∈ LRiA Mi ,,2,1 L=

[ ] ,,,, 21
2

MIII
M

N ××××∈= LL RAAAX 1 and apply 
HO-SVD on its mode-n subspace. The first leading J 
eigenvectors , where )()(

2
)(

1 ,,, n
J

nn uuu L nIJ <  ,  are 
the bases on the mode-n subspace U (n) . The 
N-dimensional data can be compactly 
represented by a tensor 

, whose 
components are the projections (coefficients) onto 
the mode-n subspace. 
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3. Generalized ND-PCA 
 

  Though ND-PCA can make the calculation of the 
bases efficiently and can accurately represent the 
multi-dimensional data. As well as 2D-PCA, 
ND-PCA is also a unilateral projection scheme and 
only compress the data on the mode-n subspace. So 
ND-PCA needs lots of components to represent the 
multi-dimensional data. In this paper, we propose a 
generalized N-dimensional PCA (GND-PCA) to 
simultaneously calculate the basis on each mode 
subspace [10]. 
  The basic idea of GND-PCA is that we want to 
reconstruct the original N-th order tensor 

with a lower rank core tensor 

 , where J

NIII ×××∈ L21RA
NJJJ ×××∈ L21RB n <I n , and try to find a set 

of optimal matrices with 
orthogonal column for each mode. The 
reconstruction of N-th order tensor A can be 
expressed as .  
Illustration for 3
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rd  order tensor reconstruction is 
shown in Fig.2. 
 

 
 

Fig.2 Illustration of reconstructing a 3 rd  order tensor 
 

The optimal orthogonal matrices U (n)  can be 
determined by minimizing a cost function as Eq.(6). 
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In Eq.(6), only the samples   
( ) are known, M is the number of 
samples. 
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Theorem 1:  Given fixed N matrices U (n) , the 
tensors B i  that minimize the cost function of.(6) are 
given by 
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Since the proof of Theory 1 is simple, it is omitted 
here. From Theorem 1, we can obtain Theorem 2 
[10]. 

Theorem 2:  If the tensors B i  are given as Eq.(7), 
minimization of the cost function of Rq.(6) is equal 
to maximization of the following cost function: 
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There is no close-form solution to simultaneously 
resolve the matrices U (n)  for the cost function S’, 
however the explicit solution for one matrix can be 
obtained if the other matrices are fixed [10]. So we 
use an iteration algorithm to simultaneously 
calculate the optimal matrices 

which are able to maximize the 

cost function S’. This algorithm is summarized in 
Algorithm 1. In Algorithm 1, we terminate the 
iteration when the cost of Eq.(8) is not significantly 
changed in two consecutive times. 
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4. Experimental Results 
 

The proposed GND-PCA is applied to medical MR 
volumes. We use eighteen MR T1-weighted 3D 
images (volumes) of Vanderbilt database [11]. These 
eighteen volumes are collected from different 
patients, and their dimensions are 26256256 ×× . We 
choose one volume as the template and align the 
other seventeen volumes onto the template by 
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similarity-transformation based rigid registration. A 
3D similarity-transformation has seven parameters, 
three for translations, three for rotation angles and 
one for scaling factor [10]. Such a registration can 
eliminate global difference but keep the local 
differences for the modeling. Three registered MR 
volumes are shown in Fig.3, which are used as 
training samples. 

 

Fig.3 Examples of the registered MR volumes 
 
The medical volumes are treated as a series of the 

3 rd  order tensors. The leave-one-out experiment is 
done to test the generalization ability of GND-PCA. 
We use seventeen volumes as samples to learn the 
optimal subspaces and the left-untrained one is used 
as a test. In training process, the iteration is 
terminated when there is no dramatic change of the 
cost function in two consecutive times. The 
convergence of the training for 155050 ××  
mode-subspace bases is shown in Fig.4. It can be 
seen that the convergence is fast. Usually two times 
of iteration is enough.  

One typical result is shown in Fig.5. The test volume is 
reconstructed from and 

mode-subspace bases, respectively. The 
corresponding compressing rates are 2.2% and 6.6%, 
respectively. It can be seen that the quality of the 
reconstructed images become better and better as 
increasing the mode-subspace bases, especially for the 
tumor region (the bright region in lower right). It should 
be noted that the training samples do not have similar 
tumors around that position.  

155050 ××
207575 ××

In order to make a comparison,  the same experiments  

 
Fig.4 Convergence of GND-PCA 

 

 

Fig.5 Reconstructed results with GND-PCA bases 
 

are also done with classical PCA (1D-PAC) and ND-PCA. 
In classical 1D-PAC, the volume image should be first 
unfolded into a vector with a huge dimension of 1703936. 
So only the eigenface method [2] can be used to calculate 
the PCA subspace. The reconstructed result is shown in 
Fig.6. Since in the eigenface method, only 16 bases are 
available which are too few compared to the dimension of 
1703936, the test volume can not be reconstructed well as 
shown in Fig.6. So it is clear that if the samples for 
training are limited, the classical PCA can not used for 
modeling or efficient representation of the 
multi-dimensional data because of its bad performance on 
generalization.  

The reconstructed volumes by ND-PCA[5] in the 
leave-one-out testing experiments are shown in Fig.7. 
The compression rate is about 11.7%, which is 
corresponding to 20100100 ×× in GND-PCA. It can 
be seen that the results of ND-PCA are better than 
the results of classical 1D-PCA (Fig.6). But they are 
more blurred compared to the results of our 
GND-PCA (the case of in Fig.5). 207575 ××
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Fig.6 Reconstructed results with classical 1D-PCA bases 

 

 
Fig.7 Reconstructed results with ND-PCA basis 

 
In order to make a quantitative comparison, 

normalized correlation (NC) of the original volume 
 and the reconstructed volume , 

which is defined as Eq.(9) and is used as a 
quantitative measure, are shown in Fig.8. The 
compressing rate in each method is the same (11.7%). 
It can be seen that the normalized correlation for 
GND-PCA is higher than ND-PCA and conventional 
PCA.   
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5. Conclusion 
 
  We proposed a novel approach called generalized 
N-dimensional principal component analysis 
(GND-PCA) for efficient multi-dimensional data 
representation and modeling. ND-PCA can be 
considered as a special case of GND-PCA. The 
effectiveness and representation ability of GND-PCA 
have been demonstrated by experiments on medical 
MR volume dataset.  

 
Fig.8 Comparison of results for PCA, ND-PCA, GND-PCA 
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