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Abstract Resolution synthesis (RS) is a framework for expanding a given image using an interpolator trained in

advance with a training dataset. We address how to determine the optimal size of the support for RS using a sparse

Bayesian formulation. Experiments show that compact supports can be automatically learned by our Bayesian RS.
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1. Introduction

Resolution synthesis (RS) [1,2] is a framework for expand-

ing a given image using an interpolator trained in advance

using a training dataset. Prior training is the characterizing

feature of RS and it differentiates RS from classical image ex-

pansion methods such as bilinear interpolation and splines.

When determining the value of a pixel in a high-resolution

image, the bilinear interpolation filter uses at most four low-

resolution pixels around the pixel of interest. In contrast,

RS in principle can use a support of arbitrary size. Atkins’

original RS [1,2] used a 5× 5 window without providing log-

ical justification to this choice. The supports should be sim-

ple for efficient processing of images and also for preventing

overfitting, whereas those that are too simple will deterio-

rate the expansion performance. We address the problem of

determining an optimal support by formulating RS from a

viewpoint of sparse Bayesian estimation.

Let r be an integer magnification factor. The purpose here

is to estimate an rM × rN expanded image ξ̂ from a given

M × N image ξ. In RS, an interpolator called a resolution

synthesizer (RSer) expands the image by replacing each one

pixel in the given image by an r × r high-resolution patch.

To estimate the high-resolution patch, RS uses the low-

resolution pixel patch surrounding the low-resolution pixel

to be replaced (Fig. 1). This local interpolation is repeated

for every pixel in the given image and the expanded image

is constructed by tessellating the high-resolution patches.

In Section 2, we describe the classical maximum likelihood

RS (MLRS). Section 3 presents a Bayesian modeling of RS

(BayesRS), and we derive an iterative algorithm to find the

optimal BayesRSer in Section 4. Experimental results are

given in Section 5. Section 6 summarizes this article.
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Fig. 1 Resolution synthesis uses m×m = Q low-resolution pixels

to estimate r × r = D high-resolution pixels.

2. Resolution Synthesis

In advance of real image expansion jobs, we train a RSer

using a training dataset. The dataset consists of a large

number of low- and high-resolution patches, and the RSer

learns the relationship between the low- and high-resolution

patches. Let zn be the m2 = Q-dimensional vectors of low-

resolution patches, xn be the r2 = D-dimensional vectors

of high-resolution patches, and D = {(xn, zn)}N
n=1 be the

dataset consisting of N pairs of the patches. We stack the

vectors column-wise and obtain matrices Z = [z1, . . . , zN ]

and X = [x1, . . . ,xN ].

We assume a linear relationship between xn and zn:

xn = Wzn + µ + εn, (1)

where W is a D × Q filtering matrix, µ is a D-dimensional

bias vector, and εn is isotropic Gaussian noise with precision

(inverse variance) β. Let wd be the dth row of W. Then wd

is the filtering kernel to estimate the dth pixel of the high-

resolution patch. Therefore we regard W as a matrix built

by stacking D filters. This model leads to the probability

distribution of xn, or the likelihood,

p(xn|zn, W, µ, β) = N (xn|Wzn + µ, β−1ID), (2)
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where N (·) denotes the Gaussian distribution N (x|µ, Σ) =

|2πΣ|−1/2e−
1
2 (x−µ)TΣ−1(x−µ) and ID is the D-dimensional

identity matrix.

MLRS estimates the parameters via the maximum likeli-

hood rule

(W∗, µ∗) = arg max
(W,µ)

“

N
X

n=1

ln p(xn|zn, W, µ)
”

, (3)

whose solution can be easily found as

eW∗ = (eZeZT)−1
eZXT, (4)

where eW and eZ are extended matrix and vector, respectively,

to include µ and defined as

eW =
h

W µ
i

, eZ =

"

Z

1T

#

. (5)

MLRS then estimates a high-resolution patch x from a

given z by the following filtering equation:

x = eW∗

"

z

1

#

= W∗z + µ∗. (6)

Note that maximum likelihood estimation inherently suffers

from overfitting, that is, increasing the size of the filters be-

yond certain complexity results in increased generalization

errors, although the training errors always decrease [3].

3. Bayesian Modeling of RS

According to the Bayesian framework, all parameters are

treated as random variables, and prior distributions are put

on them as follows:

p(W|A) =

D
Y

d=1

Q
Y

q=1

N (wdq|0, α−1
dq ), (7)

p(µ|ρ) = N (µ|0, ρ−1ID), (8)

p(β) = G(β|aβ0, bβ0), (9)

where the gamma distribution is denoted by G(τ |a, b) =
1

Γ(a)
baτa−1e−bτ . We further put hierarchical priors

p(A) =
D

Y

d=1

Q
Y

q=1

G(αdq|aα0, bα0), (10)

p(ρ) = G(ρ|aρ0, bρ). (11)

The joint density is decomposed according to the model as

p(A, W, ρ, µ, β, X|Z)

= p(A)p(W|A)p(ρ)p(µ|ρ)

N
Y

n=1

p(xn|zn, W, µ, β). (12)

The prior for the filtering matrix W, (7), is similar to that

in a sparse Bayesian treatment called automatic relevance

determination (ARD), which was first introduced for neural

networks [4]. The parameters αdq work as regularizers that

pull wdq toward the prior mean 0. Therefore, if αdq are large,

estimated values of wdq become small. It is known that in

this “sparse Bayesian” type of estimation [5], the elements

of W irrelevant to the filtering subspace are automatically

pruned because the corresponding elements of A diverge to

infinity.

The filtering equation that maps a low-resolution patch z

to a corresponding high-resolution patch x is given by the

mean value of the predictive distribution:

E(x) =

Z

dxxp(x|z,D). (13)

The predictive distribution p(x|z,D) is given by

p(x|z,D) =

Z

dAdWdµdρdβ p(x|z, W, µ, β)

× p(A, W, ρ, µ, β|D), (14)

where the posterior is given by the Bayes theorem as

p(A, W, ρ, µ, β|D)

=
p(A, W, ρ, µ, β, X|Z)

R

dAdWdµdρdβ p(A, W, ρ, µ, β, X|Z)
. (15)

However, analytical evaluation of the true predictive distri-

bution is intractable because it is a complex of Gaussian and

gamma variables. Therefore, we adopt an efficient computa-

tion procedure based on variational estimation.

4. Variational Estimation

The posterior distribution p(A, W, ρ, µ, β|D) is approxi-

mated by a trial distribution q, which is a distribution re-

stricted to have a factorization property:

q(A, W, ρ, µ, β) = q(A)q(W)q(ρ)q(µ)q(β). (16)

We denote the latent variables by τ = {A, W, ρ, µ, β} for

simplicity. Within the restricted distribution space, we

search for the optimal trial distribution that minimizes the

Kullback-Leiber (KL) divergence to the true posterior distri-

bution:

q?(τ ) = argmin
q

DKL(q(τ )‖p(τ |D)), (17)

where the KL divergence is defined by

DKL(q(τ )‖p(τ |D)) = −
Z

dτ q(τ ) ln
p(τ |D)

q(τ )
(18)

= −
D

ln
p(τ |D)

q(τ )

E

. (19)

Here, 〈·〉 is the expectation operator with respect to q(τ ).

The KL divergence is always nonnegative, DKL(q‖p) >= 0,

for any q and p, and DKL(q‖p) = 0 if and only if q and p
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are equivalent distributions. This variational optimization

problem can be analytically solved if we optimize only one

factor, fixing the other factors. We then iterate computing

optimal factors q∗(A), q∗(W), q∗(ρ), q∗(µ), and q∗(β) in a

sequential manner until convergence to find a minimum q?.

The optimal trial factors are found as follows:

q∗(A) =

D
Y

d=1

Q
Y

q=1

G(αdq|aαdq, bαdq), (20)

q∗(W) =
D

Y

d=1

N (wd|m(d)
w , Σ(d)

w ), (21)

q∗(ρ) = G(ρ|aρ, bρ), (22)

q∗(µ) = N (µ|mµ, Σµ), (23)

q∗(β) = G(β|aβ, bβ), (24)

where the parameters are

aαdq = aα0 +
1

2
, bαdq = bα0 +

1

2
〈w2

dq〉, (25)

Σ(d)
w =

“

〈diag(αd1, . . . , αdQ)〉 + 〈β〉
N

X

n=1

ztz
T
t

”−1

, (26)

m(d)
w = 〈β〉Σ(d)

w

N
X

n=1

(xdn − 〈µd〉)zn, (27)

aρ = aρ0 +
D

2
, bρ = bρ0 +

1

2
〈µTµ〉, (28)

Σµ =
1

〈ρ〉 + N〈β〉 ID, (29)

mµ = 〈β〉Σµ

N
X

n=1

(xn − 〈W〉zn), (30)

aβ = aβ0 +
ND

2
, (31)

bβ = bβ0 +
1

2

N
X

n=1

˘

xT
nxn − 2xn〈W〉z − 2xT

n 〈µ〉

+ zT
n 〈WTW〉zT

n + 2zT
n 〈W〉T〈µ〉 + 〈µTµ〉

¯

.

(32)

The expectations remaining in the above equations can be

evaluated easily using the well-known results in statistics.

We denote the mean of the joint trial distribution q(W)

by MW, that is, we put MW = [m
(1)
w , . . . , m

(D)
w ]T. The

filtering equation for the variational BayesRS is obtained by

substituting the true posterior distribution with the trial dis-

tribution, which results in

E(x) ≈ 〈x〉 = 〈W〉z + 〈µ〉 = MWz + mµ. (33)

As a criterion to check convergence and stop iterating (20)–

(24), we monitor the relative change of the Frobenius norm

of MW

∆ = ‖M′
W − MW‖F/‖M′

W‖F, (34)

where M′
W is the matrix at the previous iteration step, and

terminate the algorithm when ∆ < 10−6. To accelerate the

Fig. 2 Images used as for training RSers (4.1.[01–08] in the USC-

SIPI image database [6]).

convergence, the expected values of αdq are thresholded to

infinity when they are greater than e20.

We shall use a hyperparameter setting of the noninforma-

tive limit, aβ0 = bβ0 = 0, aρ0 = bρ0 = 0, for β and ρ but we

use aα0 = 20, bα0 = 0 to facilitate the divergence of αdq. Hav-

ing zero hyperparameters makes the priors improper, but it

is not a problem since the posteriors are well defined.

5. Experiments

We conducted experiments to see which subspace would

be selected by BayesRS and to compare the performance of

BayesRS with that of MLRS. The expanding factor was cho-

sen to be r = 2. The training dataset was prepared by the

following procedure. High-resolution patches were prepared

by cutting the eight images of size 256× 256 shown in Fig. 2

into non-overlapping pieces, resulting in N = 8 · 2562/r2 =

131, 072 patches in total. To make low-resolution patches,

first the high-resolution images were shrunk by a factor of 2,

and overlapping patches of size m×m were extracted to pro-

duce 131, 072 low-resolution patches. To extract patches near

the boundaries, the low-resolution images were extended by

replication.

To evaluate the generalization performance in expanding

images, we used the Lena image shown in Fig. 7(a) (4.2.04

in the USC-SIPI image database) as the original image ξ,

which was not included in the training image dataset. This
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Fig. 3 Learned BayesRS filters (in log scale).
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Fig. 4 Supports of BayesRS filters.

image was shrunk by a factor of 2 (Fig. 7(b)) and given to

the trained RSers. To quantitatively assess the performance

of the RSers, the peak signal-to-noise ratio (PSNR) of the

expanded image ξ̂ was measured. PSNR is defined by

PSNR(ξ, ξ̂) = 10 log10

κ2

‖ξ − ξ̂‖2/MN
[dB], (35)

where κ is the maximum pixel value and MN is the number

of pixels. When displaying filters, we use a log conversion

sign(wdq) ln(1+ |wdq|), where sign(x) = +1/0/−1 if x is pos-

itive, zero, or negative, respectively.

The BayesRS algorithm was executed with the size of the

filters being m × m = 19 × 19. The shapes of the learned

filters are shown in Fig. 3, and the supports (regions where

the filters had nonzero values) are shown in Fig. 4. The

sizes of the learned supports were 20, 20, 20, and 21. An in-

teresting point is that the learned supports had asymmetric

shapes. From the shapes of the learned supports, we can say

that the direct horizontal and vertical pixels are highly rel-

evant for estimating high-resolution pixels, but the diagonal

pixels are of less importance. The expanded Lenna image

using the learned filters is shown in Fig. 7(d) and its PSNR

was 35.72 dB, which was significantly (about 1.6 dB) better

than the image expanded by the bicubic method (Fig. 7(c)).

The cross in Fig. 6 indicates the PSNR and its horizontal

coordinate is the mean support size (20.25).

Next, we measured the performances of the MLRSers with

sizes of the supports varying from 3 × 3 = 9 pixels to

19 × 19 = 361 pixels. Fig. 5 shows the shapes of the fil-
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Fig. 5 Learned MLRS filters (in log scale).
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Fig. 6 Performance of RSers with effective sizes of support. The

circles connected by line show the performance of the

MLRSers and the cross is the one of the BayesRSer. For

comparison, the performance of the bicubic interpolation

method is shown by the triangle.

ters trained by the MLRSer when the size of the support

was 19 × 19. There were no nonzero element in the filters.

The PSNRs of the MLRSers are shown in Fig. 6 as the circles

connected by the line. The maximum PSNR of 35.76 dB was

attained when the support size was 9 × 9 = 81, and the use

of larger supports only degraded the performance, showing

a typical overfitting.

6. Conclusion

We showed that automatic selection of the subspace rele-

vant to RS image expansion was successfully achieved using

a sparse Bayesian methodology that incorporated the prior

setting called ARD. The PSNR of BayesRS’s estimation was

0.04 dB worse than that of the best MLRS, which indicates

an essentially ignorable loss of performance. The mean size of

BayesRS’s support, 20.25, was 1/4 of that of the best MLRS,

which was significantly smaller. These facts suggest BayesRS

should be advantageous for future practical applications.
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(a) 512 × 512 original image.

(b) 256 × 256 low-resolution image.

(c) Bicubic interpolation. PSNR: 34.16 dB.

(d) Bayesian RS. PSNR: 35.72 dB.

Fig. 7 Images.

(a) Original image (close-up).

(b) Low-resolution image (close-up).

(c) Bicubic interpolation (close-up).

(d) BayesRS (close-up).

Fig. 8 Close-up images.
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