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Abstract Dissimilarity-Based Classifiers (DBCs) are a way of defining classifiers based on a suitable dissimilarity

measure between individual patterns. In the attempt to find the most appropriate dimensionality reduction method

for DBCs, in this paper, we report a comparison between the computational complexities of prototype selection

methods (PSM) and dimensionality reduction schemes (DRS). This is done by theoretically and experimentally

demonstrating the strength in terms of processing time and classification accuracy.
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1. Introduction

One of the most recent and novel developments in pattern
classification is the concept of dissimilarity-based classifiers
(DBCs) proposed by Duin and his co-authors [1], [2]. DBCs
are a way of defining classifiers between the classes, which
are not based on the feature measurements of the individ-
ual patterns, but rather on a suitable dissimilarity measure
between them [3].

The problem with this strategy, however, is that we need
to select a representative set of data that is both compact
and capable of representing the entire data set. In DBCs, a
good selection of prototypes seems to be crucial to succeed
with the classification algorithm in the dissimilarity space.
The prototypes should avoid redundancies in terms of se-
lection of similar samples, and prototypes should include as
much information as possible[1], [2], [3]. However, it is dif-
ficult to find the optimal number of prototypes, and there
is also a possibility that we lose some useful information for
discrimination when selecting the prototypes.

Recently, to avoid these problems, researchers [4], [5] pro-
posed an alternative approach where they used all avail-
able samples from the training set as prototypes, and
subsequently apply dimensionality reduction schemes [5].
In the attempt to find the most appropriate reduction
method, in this paper, we report a comparison between
the computational complexities of prototype selection meth-
ods (PSM) and dimensionality reduction schemes (DRS) for

dissimilarity-based classification. This is done by theoreti-
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cally and experimentally demonstrating its strength in terms

of processing time and classification accuracy.

2. Dissimilarity-Based Classification

Foundations of DBCs :

a set of samples, T = {x;}7_; € R, is based on pairwise

A dissimilarity representation of

comparisons and is expressed as an n x m dissimilarity ma-
trix Dr,y [, ], where Y = {y1,---,ym}, a prototype set, is
extracted from 7', and the subscripts of D represent the set
of elements, on which the dissimilarities are evaluated. Thus,
each entry Dty [i, j] corresponds to the dissimilarity between
the pairs of objects (x;,y;), where x; € T and y; € Y. Con-
sequently, an object x; is represented as a column vector as

follows:

[d(xi,y1),d(xi,y2), -+, d(xi,ym)]" , 1 i <. (1)

Here, the dissimilarity matrix Dz y[-, -] is defined as a dis-
similarity space, on which the d-dimensional object, x, given
in the feature space, is represented as an m-dimensional vec-
tor dy (x).

For a training set {x;}!_, and an evaluation sample z, the
modified training set and sample now become {dv (x:)}_;
and dy (z), respectively. From this perspective, we can see
that the dissimilarity representation can be considered as a
mapping, by which any arbitrary x is translated into dy (x),
and thus, if m is selected sufficiently small (i.e., m << p),
we are essentially working in a space with much smaller di-
mensions. The literature [1] reports the use of many tradi-

tional decision classifiers, including k-NN rule and the lin-



ear/quadratic normal-density-based classifiers, to the task of
classifying z using dy (z) in the dissimilarity space.
Prototype Selection Methods (PSM) : To select the
representative set that is compact and capable of simultane-
ously representing the entire data set, Duin and colleagues [1]
discussed the followings : Random, RandomC, KCentres,
ModeSeek, LinProg, FeatSeal, KCentres-LP, and EdiCon.

In the interest of completeness, we briefly explain below
the methods that are pertinent to our present study. Here,
we assume c classes, a training set 7', and the training sub-
set T; of the class w;. Each method selects m objects for the
prototype set Y. If the algorithm is applied to each class sep-
arately, then m; objects are chosen, such that m = Zle m;.

0 10 Random : This method involves a random selection
of m samples from the training data set T'.

O 20 Random(C': This method involves a random selection
of m; samples per class, w;, from T;.

0 30 KCentres: This method consists of a procedure that
is applied to each class separately. For each class w;, the al-
gorithm is invoked so as to choose m; samples which are
“evenly” distributed with respect to the dissimilarity matrix
Dr; 1], -]- The algorithm can be summarized as follows: (a)
Select an initial set Y; = {y1,--,¥m; } consisting of m; ob-
jects, e.g., randomly chosen from T;. (b) For each x € T;,
find its nearest neighbor in Y;. Let N;,j = 1,---,m;, be a
subset of T; consisting of objects that yield the same near-
est neighbor y; in ¥;. This means that T; = UJZ N;. (c)
For each Nj, find its center c¢;, which is the object for which
the maximum distance to all other objects in N; is minimum
(this value is called the radius of Nj). (d) For each center c;,
if ¢; # y;, then replace y; by c¢; in Y;. If any replacement
is done, then return to Step (b). Otherwise exit. (e) Return
the final representation set Y which consists of all the final
sets Y;.

040 ModeSeek :
the dissimilarity data in the specified neighborhood size s.
(a)

Set a relative neighborhood size as an integer s > 1. (b)

This method focuses on the modes in

For each class w;, the algorithm proceeds as follows:

For each x € Tj, find the dissimilarity ds—yn(x) to its s-th
neighbor. (c) Find a set Y; consisting of all x; € T; for which
ds—nn(x;) is minimum within its set of s neighbors.

From the experimental results of[2], the authors seem to
have deliberated that systematic approaches lead to better
results than those that rely on random selection, especially
when the number of prototypes is small. Furthermore, al-
though there is no single winner (inasmuch as the results de-
pend on the characteristics of the data), they indicate that,
in general, the KCentres works well. The details of the other
methods, such as FeatSel, LinProg, KCentres-LP, and Edi-

Con, are omitted here in the interest of compactness, but
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can be found in the existing literature, including [1] and [3].
Dimensionality Reduction Schemes (DRS) : Various
strategies have been used to tackle the “dimensionality re-
duction” problem (some of them are [6], [8], [9], [10], and [11]).
To optimize DBCs, we can use a strategy of reducing the di-
mensionality after computing the dissimilarity matrix with
the entire training samples. With regard to reducing the di-
mensionality of the dissimilarity matrix, we make use of the
well-known dimensionality reduction schemes (DRSs) pro-
posed in the literature. In the interest of completeness, we
briefly explain below the methods that are pertinent to our
present study’” '".

010 PCA : We first compute the covariance matrix of
the training set T after normalizing T'. Next, we determine
the eigenvectors e; corresponding to the nonzero eigenvalues
A; of the covariance matrix, where Ay =2 --- 2 Ay =2 0. Then
we can reduce the dimensionality of an object by represent-
ing it in a new coordinate system defined by the eigenvectors
corresponding to the m(< d) highest eigenvalues.

020 LDA : This method uses the concept of a within-
class scatter matrix, S,,, and a between-class scatter ma-
trix, Sy, to maximize a separation criterion, such as J =
tr(S,,' Sp). We can obtain the solution by solving an eigen-
values problem on the matrix S, 'Sy, if S,,! is nonsingular,
or on Sb’lSw if 51:1 is nonsingular. There are at most ¢ — 1
eigenvectors corresponding to nonzero eigenvalues since the
rank of the matrix S, is bounded by ¢ — 1. Therefore, the
reduced dimension is at most ¢ — 1.

030 PCA-plus-LDA : In this two-stage algorithm, the
discriminant stage is preceded by a dimension reduction
stage using PCA. However, its computation is expensive,
and the PCA stage may also potentially lose some useful
information for discrimination.

040 DCYV : This approach extracts the common proper-
ties of the training samples T; of w;. The common vectors
are then used for recognition. A common vector x,,, is ob-
tained by removing all the features that are in the direction
of the eigenvectors e’s corresponding to the nonzero eigen-
values of the scatter matrix of w;: set Q@ = [e1, - -
Teom = 25— QQzj, j =1,

the rank of the scatter matrix; finally obtain ¥ = QT X.

,€r]; then

,ni, t = 1,---,¢, where r is

The details of other methods are omitted here in the in-
terest of compactness, but can be found in the existing liter-
ature, including[9], [10], and [11].

3. The Computational Complexity

First, the time complexity of PSM is analyzed. Following

00 10 Our overview is necessarily brief, but additional details can be
found in [8], [9],[10], and [11].



this, the time complexity of DRS is given.

The Time Complexity of PSM : First of all, the time
required for the Random algorithm is tranda = trand(m),
where m is the number of prototypes and t,qnqa(m) is the
time for generating m random numbers. From this analy-
sis, the reader can observe that the time complexity of the
).

Next, the time complexity of the RandomC algorithm can

algorithm is O(m

be analyzed as follows: First, let the computation times for
the operations of addition (or subtraction), substitution (or
comparison), and multiplication (or division) be t4, ts, and
tm, respectively. The time required for initializing the algo-
rithm is t1 = trana(m —mic) + (m —mits + 1) (tm +ta + ts).
Then, the time required for iterating a sub-step c times is
ta = cx ((24mi)ta +trana(ms)+2mits + (m; +1)tm). Thus,
the total time required for the entire procedure to process
many kinds (classes) of images under the condition ¢; << t2
1S tRandc = t1+t2 = to = c X (mi(te+2ts +tm) +trand(m;)).
From the above analysis, the reader can observe that the
time complexity of the algorithm is O(m;c) ~ O(m), and
the required time primarily depends on the parameter of m.
Third, the time complexity of the KCentres algorithm can
be analyzed as follows: First, the time required for initializ-
ing the algorithm is 1 = tmin(n) + tmin(d) + ts. Then, the
time required for the other steps is a sum of times to iterate
the followings n times: t(21) = 3ktmin(d) + 3kts + trana(n);
t(22) = k(d+1)ta+k(ni+1)tmin(n:). Thus, the total time re-
quired for the entire procedure under the condition #; << t»
is trccent = N(to1) + o) = N(3ktmin (d) + trana(n) + 3kts +
dtmin (k) +knitmin (n:)+kdts), where k is the k in k-NN strat-
egy, tmin(n) is the time required to search for the minimum
number from n numbers, and 7, an experimental constant, is
the number of trials to achieve the selection. From the above
analysis, the reader can observe that the time complexity of
the algorithm is O(kn? + kd + n + k), and the required time
primarily depends on the parameters of n, d, and k.
Finally, the time complexity of the ModeSeek algorithm
can be analyzed as follows: First, the time required for step
(a) is t(q) = (n+dn+nk)t,. Next, the time required for step
(b) is tpy = 2(n — 2)dta + (d + 1)(n — 2)tm + 2(n — 2)ts.
Then, the time needed for step (c) is a sum of times to
compute the three sub-steps of (c1), (c2), and (c3) for all
the n samples: t,) = (dn 4 2n + 3)ts + tmin(n); ey =
(k = 1)(tmin(n) + 2ts); tes) = n((2d + 1)ts + tq). Thus,
the total time required for repeating the three steps c times
i tamrodes = ¢ X (ta) + t) + ntey)) = ¢ x ((2dn + 5n +
2k — 6 + nk)ts + (3n — 4)ta + (d + 1)(n — 2)tm + tmin(n)).
From the above analysis, the reader can observe that the time
complexity of the algorithm under the condition k << d is
O(ned + nck) ~ O(ned), and the required time primarily
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O 1 A comparison of the time complexities of the PSM and DRS

techniques. The details of the table are discussed in the text.

Reduction Methods | Big-oh Computation
Random O(m)
RandomC O(m)
KCentres O(kn? + kd+ n + k)
ModeSeek O(necd + nek) ~ O(ned)
PCA O(n%d)
LDA O(n?d)
PCALDA O(n?d)
DCV O(n%d + c%d)

depends on the parameters of n, ¢, and d.

The Time Complexity of DRS : In[7], it is reported
that the time complexities of LDA based methods, such as
PCA, PCA+LDA, LDA/GSVD, and RLDA, respectively,
are O(n’d), O(nd), O((n + c)?d), and O(n?d), and their
space complexities are all the same as O(nd). The details of
the above analysis are omitted here in the interest of com-
pactness. Also, in[11], it is reported that DCV requires ap-
proximately (2d(n — c)? + 4dnc) flops. From this report, the
reader can observe that the time complexity of the algorithm
is O(n*d + ¢*d), and the required time primarily depends on
the parameters of n, d, and c.

In summary, to examine the rationality of employing the
dimensionality reduction schemes for DBCs, the time com-
plexity required to reduce the dimensionality has been in-
vestigated. Table 1 shows a comparison between the time

complexities of PSM and DRS techniques.
4. Experimental Results

The PSM and DRS based techniques have been tested
and compared. This was done by performing experiments
on the well-known benchmark database, namely, “UMIST”
face databasé’” "

We reduced the dimensionality of the dissimilarity matrix
with a DRS, such as PCA [8], LDA [10], PCA-plus-LDA [9],
or DCV [11]. In the DRS based techniques, we reduced the
dimension n—1 to ¢—1, where n is the total number of train-
ing samples and c is the number of classes. In the PSM based
techniques of Random, RandomC, KCentres, and ModeSeek,
on the other hand, we selected c—1, ¢, ¢, and ¢ samples from
the training data set as the prototypes of DBCs.

We experimented different classifiers, such as the k-nearest
neighbor classifiers (1-NN, 3-NN, 5-NN, 7-NN), the nearest
mean classifiers (NMC), the support vector classifier (SVC),
and the regularized normal density-based linear/quadratic
classifiers (RLDC, RQDC). The classifiers were implemented

00 200 http://images.ee.umist.ac.uk/danny/database.html



O 2 A comparison of the classification accuracy rates (%) of
DBCs for the UMIST database between the PSM and DRS

based techniques.

Experimental | 1NN 3NN 5NN | 7NN
Methods NMC | RLDC | QLDC | SVC
Random 98.00 | 98.67 | 98.67 | 97.33

95.33 | 95.33 | 99.33 | 98.67

RandomC 99.33 | 99.33 | 98.00 | 97.33
97.33 | 98.00 | 99.33 100

KCentres 98.67 | 98.67 | 98.67 | 98.00
96.00 | 88.00 | 93.00 | 98.67

ModeSeek 99.33 | 99.33 | 99.33 | 99.33
99.33 | 99.33 | 99.33 | 98.67

PCA 99.33 | 99.33 | 99.33|99.33
99.33 | 99.33 | 99.33|99.33

LDA 99.33 | 99.33 | 99.33|99.33
99.33 | 99.33 | 99.33 | 99.33

PCALDA 99.33 | 99.33 | 99.33 | 99.33
99.33 | 99.33 | 99.33 100

DCV 99.33 | 99.33 | 99.33|99.33
99.33 | 99.33 | 98.67 100

with PRTools"" 3",

In comparing the PSM and DRS based techniques, first
of all, we measured the classification accuracies (%) of the
DBCs for the real benchmark database. Table 2 shows a
comparison of the classification accuracy rates (%) (for the
process of prototype selection or dimensionality reduction)
of DBCs for UMIST.

From Table 2, the reader can observe that the classifica-
tion performances of the classifiers are improved with the
DRS based techniques.

In comparing the PSM and DRS based techniques, we
also measured the processing CPU-times (seconds) of the
DBCs for the face database.

of the averaged processing CPU-times (for the process of

Table 3 shows a comparison

prototype selection or dimensionality reduction) of DBCs
for UMIST. Here, to measure the dissimilarities, we used
Euclidean distance (ED), Hamming distance (HD), regional
distance (RD) [12], or spatially weighted gray-level Hausdorff
distance (WGHD) [13].

From Table 3, it is clearly observed that the processing
CPU-times (seconds) increases when the DRS technique is

applied.

5. Conclusion

In the attempt to reduce the dimensionality of dissimilarity
representation, we can use dimensionality reduction schemes

(DRS) as well as prototype selection methods (PSM). In

00 300 http://www.prtools.org/
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0O 3 A comparison of the averaged processing CPU-times (sec-
onds) of DBCs for the UMIST database. Each number of
the table is obtained by averaging the results of five itera-
tions on a Windows platform (CPU: 2.40 GHz, RAM: 2GB).

Experimental UMIST

Methods ED | HD RD | WGHD
Random 0.15| 0.10 0.10 0.10
RandomC 0.27 | 0.25 0.26 0.27
KCentres 24.10 | 23.27 | 24.44 22.06
ModeSeek 5.91| 5.95 5.85 5.85

PCA 52.76 | 46.32 | 44.91 43.00

LDA 1.94| 1.32 1.35 1.33
PCALDA | 42.500 | 42.50 | 38.98 41.29

DCV 13.88 | 13.63 | 13.751 13.86

this paper, we considered a comparison between the com-
putational complexities of PSM and DRS techniques. This
has been done by theoretically and experimentally analyz-
ing their computational complexities. Our experimental re-
sults for the well-known benchmark facial images demon-
strated the possibility that DRS could be used efficiently for
dissimilarity-based classifiers (DBCs). However, it was also
observed that the processing CPU-times (seconds) increased
when the DRS technique was applied. The research concern-
ing the reduction of the processing CPU-times is a future aim
of the authors.
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