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Abstract. In this paper, we propose the Compound Mutual Subspace
Method (CPMSM) as a theoretical extension of the Mutual Subspace
Method, which can efficiently handle multiple sets of patterns by repre-
senting them as subspaces. The proposed method is based on the obser-
vation that there are two types of subspace perturbations. One type is
due to variations within a class and is therefore defined as “within-class
subspace”. The other type, named “between-class subspace”, is charac-
terized by differences between two classes. Our key idea for CPMSM
is to suppress within-class subspace perturbations while emphasizing
between-class subspace perturbations in measuring the similarity be-
tween two subspaces. The validity of CPMSM is demonstrated through
an evaluation experiment using face images from the public database
VidTIMIT.

1 Introduction

In this paper, we propose the Compound Mutual Subspace Method (CPMSM),
which has the ability to classify similar sets of patterns accurately. Then we
apply it in a face recognition experiment based on multiple images.

Subspace-based methods have recently attracted attention from many re-
searchers who are interested in recognition of 3D objects, such as faces. The
mutual subspace method (MSM)[1] is one of the most effective and efficient meth-
ods for object recognition, as it can efficiently handle multiple images[2][3][4].
In subspace-based methods, including MSM, a pattern composed of n×n pixels
is usually regarded as a vector x in n2-dimensional space. MSM represents a
set of patterns {x} from each class through a low-dimensional linear subspace
generated from the set by using the Karhunen-Loève (KL) expansion, which is
also known as principal component analysis (PCA). Finally, the similarity be-
tween two sets of patterns can be readily measured by using canonical angles θi
between two subspaces, as shown in Fig.1.

Even though MSM is capable of absorbing differences in appearance caused
by changes in view point or illumination, compared with conventional methods
using a single input image, such as the subspace method[5], the classification
performance of MSM is still not sufficiently high. One reason for this is that a
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Fig. 1. Concept of Mutual Subspace Method.

subspace which provides a satisfactory representation of the distribution of the
training patterns in terms of a least-mean-square approximation is not always op-
timal in terms of classification performance. Many extended methods have been
proposed[6][7][8] for improving the classification performance of MSM, including
the nonlinear extensions[9][10][11][12] using a kernel trick. In this paper, we fo-
cus on the Constrained MSM (CMSM) and the Orthogonal MSM (OMSM)[13]
since they have been used in the development of the recognition engine of the
state-of-the-art face recognition system “FacePass” and have achieved extremely
high scores in the Face Recognition Vendor Test (FRVT) 2006[14].

The essence of these methods is to apply MSM to sets of class subspaces which
have been orthogonalized with respect to each other in advance. The implemen-
tation of orthogonalization is different in the two methods. In OMSM, all the
class subspaces are orthogonalized by using the Fukunaga-Koontz framework[15].
The kernel OMSM executes this operation in extremely high-dimensional feature
space in order to ensure complete orthogonalization. CMSM achieves approxi-
mate orthogonalization of all the class subspaces by projecting them onto the
generalized difference subspace D. The kernel CMSM executes the projection in
a high-dimensional feature space.

In this paper, we also aim to improve the performance of MSM by introduc-
ing the concept of “difference subspace” between two subspaces. This approach
is notably different from the orthogonalization operation used in CMSM and
OMSM. Our approach is based on the observation that there are two types of
subspace perturbations. One type occurs due to differences within a class, while
the other is due to differences between separate classes. In this paper, we refer
to the former as “within-class subspace DW ” and the latter as “between-class
subspace DB”.

It should be noted that MSM does not distinguish within-class subspace
perturbations from between-class subspace perturbations. Thus, MSM cannot
distinguish an input subspace between a subspace of a rival class and a subspace
of the same class when they have the same canonical angles as a similarity to
the input subspace.

This leads us to develop a proper strategy for suppressing within-class sub-
space perturbations while emphasizing between-class subspace perturbations.
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Fig. 2. Two types of difference subspaces.

To realize such a strategy, we introduce the concept of “difference subspace”
between two subspaces. The concept of difference subspace is a natural extension
of the difference vector between two vectors. We can obtain a within-class sub-
space DW as the difference subspace between two subspaces of the same class,
as shown in Fig.2. On the other hand, we can obtain a between-class subspace
DB as the difference subspace between subspaces belonging to different classes.

The essence of the proposed method is to classify a difference subspace DI

between an unknown input subspace I and a class-t subspace Pt into one of
two types of subspaces DW and DB by using canonical angles. The similarity
obtained through this classification is used to correct the similarity obtained
with MSM. We refer to the MSM which takes into account DW and DB utilizing
difference subspaces as the “Compound Mutual Subspace Method” (CPMSM).

The advantage of the proposed method is that it can be applied only to
limited pairs of class subspaces which are too close and can be easily misclas-
sified. This restriction can reduce the computation time as compared to both
CMSM, which projects all class subspaces onto the constraint subspace, and
OMSM, which performs orthogonalization of all class subspaces. In addition,
the proposed method can be used as post-processing for existing methods, such
as MSM, CMSM, and OMSM. Here, we evaluate CPMSM by applying it to
a face recognition experiment using a public database containing face images
(VidTIMIT audio-video database) [17].

This paper is organized as follows. In Section 2, we explain the concept be-
hind the proposed method and describe the algorithm of CPMSM. In Section 3,
the effectiveness of our method is demonstrated through evaluation experiments
using a public database containing face images. Finally, Section 4 concludes the
paper.
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Fig. 3. Similarity of the input subspace I to each class subspace. This figure shows the
case that the input subspace belongs to class t, (a) the terms of the similarity to Pt,
(b) the terms of the similarity to Ps.

2 Compound Mutual Subspace Method (CPMSM)

In this section, we first explain the basic principle of CPMSM. Then, we define
a new similarity for CPMSM based on the concept of difference subspace.

2.1 The basic principle of CPMSM

The basic principle of CPMSM can be explained as follows. When the difference
subspace DI between I and the class-t subspace Pt is similar to the between-class
subspace DB and dissimilar to the within-class subspace DW , the input subspace
I should be classified into class t. On the other hand, when DI is similar to
the within-class subspace DW and dissimilar to DB, the input subspace I can
be considered to belong to some similar rival class rather than to the class-t
subspace Pt. The similarity between difference subspaces can be measured by
using canonical angles since a difference subspace is a linear subspace, as will be
mentioned later.

In practical calculation of the similarity, it is only necessary to measure the
similarity between the subspacesDI andDB sinceDI is projected onto an orthog-
onal complement of Pt in such a way that the projected DI has no components
belonging to the within-class subspace DW .

2.2 Calculation of similarity in CPMSM

The similarity SCPMSM consists of two terms, as follows:

SCPMSM (I,Pt) = (1− µ)S(I,Pt)− µS(DIt,Dst) , (1)
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where µ is a weighting parameter which should be determined experimentally.
In the above equation, the first term S(I,Pt) indicates the similarity between

the input subspace I and the class-t subspace Pt. This similarity is obtained by
using MSM. The second term S(DIt,Dst) is the regulation term, which can be
obtained as the similarity between two difference subspaces DIt and Dst, where
Dst is the difference subspace between the subspace of class t and that of its
similar rival class s.

In the following paragraphs, we will explain how to apply the above similarity
to the task of classifying an input subspace into one of two similar classes,
subspace Pt and Ps, by using Fig. 3. In this case, we can obtain the following
two similarities for the input subspace.

SCPMSM (I,Pt) = (1− µ)S(I,Pt)− µS(DIt,Dst) , (2)

SCPMSM (I,Ps) = (1− µ)S(I,Ps)− µS(DIs,Dst) , (3)

where the former is the similarity for class t and the latter is that for class s.
The input subspace is classified into the class with higher similarity.

The proposed idea of similarity shares common features with the method
used in Bayesian face recognition[18] in that it is based on the analysis of im-
age differences, that is, a difference vector between two image pattern vectors.
However, that method can not handle complex situations, such as the relation
between two sets of image pattern vectors. In addition, a single image is used as
an input in the Bayesian method.

2.3 Measure of similarity between two subspaces

The measure of similarity between two subspaces is defined through canonical an-
gles. Assume that we have an N -dimensional subspace Pt and anM -dimensional
subspace Ps (assume N ≤ M for convenience). In this case, we can obtain N
canonical angles θi, (i = 1∼N) between Pt and Ps by solving the eigenvalue
equation of the following matrix S [1]:

Sa = λa . (4)

Sij =
N∑
l=1

(Φi ·Ψl)(Ψl ·Φj) , (5)

where Φi and Ψi are the i-th orthonormal basis vectors that span subspace Pt

and Ps, respectively. The value of cos2θi for the i-th smallest canonical angle θi
is obtained as the i-th largest eigenvalue of the matrix S. Finally, the measure
of similarity between two subspaces is defined with n canonical angles as the
following equation (this measure of similarity is used for MSM):

S[n] =
1

n

n∑
i=1

cos2θi . (6)
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2.4 Definition of difference subspace

The difference subspace is considered a natural generalization of the difference
vector between two vectors[16]. A difference subspace is spanned by a set of
difference vectors di between canonical vectors, ui and vi, which form the i-th
canonical angle. The canonical vectors are calculated from the following equa-
tions:

ui =
N∑
l=1

aklΨl . (7)

vi =

N∑
l=1

a′klΦl . (8)

In the above equations, the coefficient akl is the l-th element of the k-th eigen-
vector ak, corresponding to the k-th smallest eigenvalue of matrix S in Eq.(4).
Furthermore, the coefficient a

′

kl is the l-th element of the k-th eigenvector a
′

k of

matrix S
′
, where S

′
ij =

∑M
l=1(Ψi ·Φl)(Φl ·Ψj).

2.5 Flow of the classification process using similarity in CPMSM

The process of classifying an input image set by using CPMSM is given as follows.

– Learning
• Apply KL expansion on classes s and t of training image sets to obtain

the reference subspaces Pt and Ps.
• Obtain the difference subspace Dst by using Eqs. 7 and 8.

– Testing
step 1

• Apply KL expansion on input image set to obtain the input subspace
I.

• Calculate the similarities S(I,Pt) and S(I,Ps) by using Eq. 6.
step 2

• Obtain the difference subspaces DIs and DIt by using Eqs. 7 and 8.
step 3

• Calculate the similarities S(DIs,Dst) and S(DIt,Dst) by using Eq.
6.

step 4
• Combine S(I,Pt) with S(DIt,Dst) to obtain SCPMSM (I,Pt) in Eq.
2.

• Combine S(I,Ps) with S(DIs,Dst) to obtain SCPMSM (I,Ps) in Eq.
3.

– Identification
• Compare the obtained similarity SCPMSM (I,Pt) with SCPMSM (I,Pt).

The input subspace is classified into the class which has higher similarity.
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3 Validation of the proposed method by using a database
containing face images

The proposed method was designed to distinguish classes that are difficult to
distinguish with MSM. To demonstrate the validity of the proposed method, it
is necessary to find such pairs in the data set in advance. For this purpose, we
carried out a face recognition experiment using MSM and selected pairs that
were frequently misclassified, after which we applied the proposed method to
those pairs.

3.1 Setup of experiment for face recognition

We used face images from the VidTIMIT audio-video database [17]. This database
contains face data for 43 subjects. Three sequences of images are available for
each subject. In order to conduct a face recognition experiment, the face region
was extracted from each of these images by using the face detection function
distributed with OpenCV ver. 1.0. We carefully removed false positives and ob-
tained 140 images for each sequence of images. These cropped face images were
converted into 15 × 15 pixels grayscale images, and 225 dimensional vectors were
obtained.

For the classification experiment in this paper, one sequence of images was
used to prepare test data sets, and the others were used to prepare training data
sets. Every third frame of the image sequence was used as a starting image of
the test data set.

The parameters for the experiments of one class were set as follows. Num-
ber of training images used to generate reference subspace is 280. Number of
testing images used to generate testing subspace is 30. Dimension of the refer-
ence subspace is 20. Dimension of the testing subspace is 7. Dimension of the
between-class subspace is 20. Dimension of the difference subspace between the
input subspace and either reference subspace is 7. Number of trials is 90.

3.2 Extraction of frequently misclassified pairs.

We conducted a classification experiment for all subjects contained in the database.
To examine which input data is classified into which class, we constructed a con-
fusion matrix. The confusion matrix is a table with a horizontal axis representing
the results from the classifier and a vertical axis representing the labeled class.
The classification frequency was plotted on this table.

The results from this experiment are plotted in Fig. 5. The color codes for
the frequency are given in the legend on the right. From this confusion matrix,
we can see that misclassification occurs only in certain specific similar pairs,
namely, the six pairs that involve subjects No.11, No.15, No.20 and No.42, as
shown in Fig.5. The total recognition rate for all 43 subjects was 97.2%, as shown
in Fig.4. By contrast, the recognition rate of all subjects except the mentioned
four subjects was 100%.
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Fig. 5. Frequently misclassified pairs.

3.3 Classification results for frequently misclassified pairs

To evaluate the validity of CPMSM, we compared the performance of CPMSM
with that of MSM and CMSM. These methods were applied in distinguishing
between pairs as obtained in the previous section. To compare the performance
of these methods, we used recognition rate and EER. EER is the error rate at
the threshold value where the false accept rate (FAR) is equal to the false reject
rate (FRR).

The performance of CPMSM depends on the weighting parameter µ in Eq.(3).
We select the optimal value experimentally for each pair, as shown in Fig. 6. Note
that when the weighting parameter µ is 0, CPMSM is equivalent to MSM.

From Tables 1 and 2, it can be seen that the recognition rate and EER
in CPMSM have been improved in comparison to those in MSM for all pairs.
The average recognition rate for all pairs increased from 0.950 to 0.959, and the
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Fig. 6. Relation between recognition rate and µ. In the case of µ = 0, CPMSM is
equivalent to MSM.

Table 1. Recognition rate

Confused Pairs CPMSM CMSM MSM

Pair A 1.0 0.961 1.0

Pair B 0.856 0.850 0.839

Pair C 1.0 0.961 1.0

Pair D 0.911 0.911 0.894

Pair E 0.994 0.989 0.994

Pair F 0.994 0.961 0.978

Average 0.959 0.939 0.950

Table 2. Equal Error Rate

Confused Pairs CPMSM CMSM MSM

Pair A 0.078 0.103 0.217

Pair B 0.150 0.217 0.286

Pair C 0.006 0.067 0.156

Pair D 0.094 0.139 0.222

Pair E 0.106 0.072 0.211

Pair F 0.144 0.139 0.217

Average 0.096 0.123 0.218

average EER decreased from 0.218 to 0.096. From these results, we can confirm
the validity of CPMSM and its ability to improve the performance of MSM.

4 Conclusions

In this paper, we have proposed the Compound Mutual Subspace Method (CPMSM)
for face recognition. The advantage of CPMSM is its strong ability to distinguish
between specific highly similar pairs among a large number of combinations of
subjects. This characteristics can reduce the computation time and can improve
the overall recognition rate by improving the performance with respect to a
small number of pairs. The strong ability to distinguish between similar pairs
was achieved by introducing a regulation term into the measure of similarity in
MSM. The validity of the proposed method has been demonstrated through eval-
uation experiments with face images taken from the VidTIMIT public database.
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