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Abstract

Unsupervised clustering of image sets of 3D objects has
been an active research field within vision community. It
is a challenging task since the appearance variation of the
same object under different illumination condition is often
larger than the appearance variation of different object un-
der the same illumination condition. Some previous meth-
ods perform the appearance clustering using k-subspaces
algorithm by assuming that the set of images of a Lam-
bertian object approximately reside in a low dimensional
linear subspace. This paper further extends the original k-
subspaces clustering algorithm to the nonlinear case. The
sum of the squares of distance to corresponding feature
points of each nonlinear subspace cluster centers is min-
imized using Expectation-Maximization like iteration pro-
cedure. Those distances can be novelly defined via inner
product by kernel trick. Experiments on different datasets
show that the proposed kernel-based nonlinear k-subspaces
clustering algorithm achieves much higher clustering rate
than its linear counterpart.

1 Introduction

Unsupervised clustering of image sets of 3D objects un-
der varying viewing conditions has been an active research
field within computer vision community[1, 2, 3, 4, 5, 6, 7].
Typically, there are several viewing aspects that could af-
fect the 2D image appearances during the projection pro-
cedure: the relative orientation between the viewing cam-
era and the target object, the illumination conditions under
which the images are acquired, and the reflective properties
of the surface. As in [7], this paper studies the problem of
unsupervised clustering of images sets of objects with Lam-
bertian surface taken under varying illumination conditions
while the target objects are in fixed poses. The objective is
to partition the given image sets into disjoint subsets corre-

Figure 1. Sample images of two persons un-
der varying illumination conditions in the a)
PIE database[8] b) YaleB database[9]. The ap-
pearance variation of the same object under
different illumination condition is larger than
the appearance variation of different object
under the same illumination condition which
renders the clustering according to the un-
derlying identity a difficult task.

sponding to underlying identities. It is a challenging task
since the appearance variation of the same object under dif-
ferent illumination condition is often larger than the appear-
ance variation of different object under the same illumina-
tion condition. Figure 1 shows an example of such case
using CMU PIE face dataset[8] and YaleB face dataset[9].
It can be clearly seen that a direct standard clustering using
Euclidean distance metric such as k-means algorithm will
yield poor result.

Previously, several algorithms have been proposed for
the problem of appearances clustering of objects under
varying illumination conditions[1, 2, 3, 4, 5, 6, 7]. The
most related to our work is[7]. In their work, J. Ho et al.



presented an appearance-based methods for clustering im-
age sets of 3-D objects, acquired under varying illumina-
tion conditions, into disjoint subsets corresponding to each
subject.They iteratively performed appearances clustering
using K-subspaces algorithm by assuming that images for
the same object approximately reside in a low dimension
linear subspace[2, 5, 6]. The K-subspaces clustering algo-
rithm can fully exploit the linear geometric structure hidden
among the image sets. They proposed two method for the
initialization: One is based on the concept of illumination
cones and the other is based on spectral clustering, where
the affinity matrix is computed by image gradient compar-
isons.

Recent studies show that non-linear subspace approxi-
mation via kernel trick is superior compared to their lin-
ear counterpart because the real life high dimensional data,
such as the vectorized image data, is often inherently non-
linear rather than simple normally distribution[10]. One
of the most representative innovation has been the kernel
principal component analysis(KPCA), which makes use of
the kernel trick to non-linearize PCA and extract nonlin-
ear subspaces. This kind of kernel based algorithms can
model complex real life data structures more faithfully and
have achieved much success within machine learning and
pattern recognition communities[10]. Motivated by those
successes, this paper proposes a novel algorithm that per-
forms nonlinear subspace clustering in the mapped high
dimensional feature space. Firstly, the input patterns are
mapped into a high-dimensional feature space via a nonlin-
ear mapping function. Then the nonlinear subspaces are
extracted in the feature space and distances between the
mapped feature points and extracted nonlinear subspaces
are defined via inner products by kernel trick. The ob-
jective function, which is the sum of the squares of dis-
tance to corresponding feature points of each nonlinear
subspace cluster centers, is minimized using Expectation-
Maximization like iteration procedure. Experiments on
two different face datasets show that the proposed nonlin-
ear Kernel K-subspaces Clustering(Kernel-KsC) algorithm
converges quickly and achieves much higher clustering rate
than that of the original Linear K-subspaces Clustering
(Linear-KsC) algorithm.

The rest of this paper is organized as follows: Firstly,
we describe the Linear-KsC algorithm for unsupervised ap-
pearances clustering of objects under varying illumination
conditions in Section 2. Section 3 describes the proposed
Kernel-KsC algorithm in detail. Experimental results of
the clustering performance comparison between the Linear-
KsC algorithm and the proposed Kernel-KsC algorithm us-
ing CMU PIE face dataset and Yale face dataset are pre-
sented in Section 4. Section 5 draws the conclusion.

2 Unsupervised appearances clustering

J. Ho et al.[7] showed that both the illumination cones
based method and the gradient metric based method give
reasonable results for the initialization of the iteration pro-
cedure of the linear K-subspaces clustering. They claimed
that the computation of gradient metric was reliable in low-
resolution images and could give promising clustering re-
sults. Here we adopt the similar framework as in [7]. That is
to say, firstly we also use the gradient metric based method
for the initialization and then the initial rough clustering
results are further refined using subspace clustering. We
put the emphasis on showing the superiority of the pro-
posed kernel K-subspaces clustering algorithm over its lin-
ear counterpart. For the sake of completeness, we describe
the main idea of gradient metric based clustering initializa-
tion and the iterative procedure of the original linear K-
subspaces clustering algorithm briefly in the next subsec-
tions.

2.1 Spectral clustering based on gradient
affinity

Suppose there are N input images {I1, ..., IN} where
each image has s pixels. The idea of gradient affinity is sim-
ple to directly compare between image gradient pairs. The
differences in the magnitude of the image gradient and the
relative orientation over the whole image plane are summed.
Once we get the affinity matrix, standard spectral based
algorithms[11] can be used to perform unsupervised clus-
tering. For more details, refer to literatures[7]. Also, Some
variants of the spectral clustering algorithm have been de-
veloped for the problem of automatic determination of the
number of cluster centers[12]. This paper focuses on the su-
perior performance of the proposed nonlinear K-subspaces
clustering algorithm over its linear counterpart and we sim-
ply assume that the number of the cluster centers in known
in advance.

Previous studies on illumination invariants show that the
set of monochrome images of a convex object with a Lam-
bertian reflectance forms a convex polyhedral cone when
illuminated by an arbitrary number of point light sources
at infinity[4, 5]. This implies that the collection of appear-
ances of objects can be approximated by some low dimen-
sional linear subspaces. So the initial rough clustering re-
sults using spectral method based on gradient affinity can
be further refined via subspace clustering algorithm.

2.2 Linear K-subspaces Clustering

Linear K-subspaces Clustering(Linear-KsC) algorithm
is an extension of the traditional K-means clustering algo-
rithm. While the K-means clustering algorithm tries to find



K cluster centers using Euclidean distance metric between
point pairs, the objective of K-subspaces clustering algo-
rithm is to find K linear subspace base clusters using dis-
tance metric between points and subspace bases. The K-
subspaces clustering algorithm shares the similar idea with
the k-means algorithm and the flowcharts of both iteration
procedure are almost the same. Firstly, each point is as-
signed to the nearest subspace cluster base. The distance is
computed as the length of the difference vector between the
original point and its reconstruction using the correspond-
ing subspace base center ( In the next section, we will show
that the computation of the distance can be written in the
form of inner product, which renders the extension to the
nonlinear case possible ) . Then the subspace bases are up-
dated by principal component analysis. Usually the itera-
tion procedure converges quickly in just several number of
loops. It should be noted that the original 2D image matrix
representation is firstly transformed into 1D vector form.

Specifically, the linear K-subspaces clustering algorithm
can be described as follows:

Algorithm 1: Linear K-subspaces Clustering(Linear-
KsC)

1. Initialization: Suppose there are N input images
{I1, ..., IN} where each image has s pixels. Starting with
a collection {S1, ..., SK} of K subspaces of dimension d,
where Si ∈ Rs. The corresponding orthnormal bases for
each subspace is denoted as Ui with size s× d;

2 Points assignment: Denotes ρ(xi) ∈ {1, ..., K} as the
cluster label for point xi. Then each point is assigned a new
label as follows:

ρ(xi) = argmink‖(Is×s − UkUT
k )xi‖ (1)

where k ∈ 1, ..., K;
3 Subspace update: Update each subspace bases Ui, i ∈

{1, ..., K} using the new label information. Ui can be
formed by retaining the eigenvectors corresponding to the
top d eigenvalues of the scatter matrix constructed using
those sample points with label i. This can be easily com-
puted via principal component analysis[10];

4 Repeat step 2 and 3 until convergence: The iteration
procedure will stop if the label information does not change
in two successive iteration steps.

3 Kernel K-subspaces Clustering(Kernel-
KsC)

Although the method in the previous section can give the
clustering result reasonable to some extent. It still has the
limitation that the refining procedure using Linear-KsC is
based on the assumption that the appearances of a target ob-
ject can be approximated well using linear subspace. Recent

studies show that often the distributions of the high dimen-
sional image data are inherently nonlinear. Many success-
ful algorithm for extracting those complex nonlinear struc-
tures in real life data have been proposed and one of the
most representative ones is the Kernel Principal Component
Analysis(KPCA)[10]. KPCA has achieved great success in
the areas of pattern recognition and image processing, such
as face recognition and image de-noising . We will show
that combining the K-type clustering framework with the
kernel based nonlinear feature extraction would yield much
better result for the problem of appearances clustering of
objects under varying illumination conditions.

In the next of this section, we first review the nonlinear
subspace extraction using KPCA for completeness. Then
we define the distance between point and nonlinear sub-
space in the transformed feature space. Intuitively, the dis-
tance can be defined as the “length” of the difference vector
between points and nonlinear subspace in the transformed
feature space. But a direct computation of the distance
is infeasible due to the high, or even infinite, dimensional
space. Fortunately, those difference vectors can be written
in the form of linear combination of transformed high di-
mensional feature points, which makes it possible to com-
pute the distance via “kernel trick” without explicitly im-
plement the inner product in the high dimensional feature
space. Next we will describe the proposed nonlinear Ker-
nel K-subspaces Clustering(Kernel-KsC) algorithm in de-
tail. Promising experimental results will be presented in
section 4.

3.1 Nonlinear subspace extraction via
KPCA

Recent studies in pattern recognition community show
that often the target distributions, such as those of multi-
view patterns of a 3D object or image sets of a single objects
under varying illumination conditions, is highly nonlinear.
The simple linear subspace representation is not suitable for
representing highly nonlinear structures. Several non-linear
dimension reduction methods have been proposed. One
representative is the kernel principal component algorithm
which is an unsupervised non-linear feature extractor[10].
Kernel principal component analysis allows estimation of
non-linear subspace for the data distribution such as face
images.

First, the input pattern xi ∈ Rs, i ∈ {1, ..., m} is trans-
formed from s dimensional input space I onto an higher
dimensional feature space F via a nonlinear mapping φ :
Rs → Rsφ , x → φ(x). To perform the standard PCA on
the mapped patterns, we need to calculate the inner product
(φ(xi)•φ(xj)) between the function values. Direct calcula-
tion of those inner products is difficult since the dimension
of the feature space F could be very high, possibly infi-



nite. Kernel learning theory shows that if the nonlinear map
φ is defined through a kernel function k(x, y) which satis-
fies Mercers conditions, the inner products (φ(xi) • φ(xj))
can be calculated from the inner products k(x • y). A
common choice is to use the Gaussian kernel function:
k(x, y) = exp(−‖xi−xj‖2

σ2 ) where σ is the scale parameter.
The N orthonormal basis vectors ei, i = {1, ..., N}, which
span the nonlinear subspace, can be represented by the lin-
ear combination of all the m transformed patterns in the fea-
ture space φ(xj), j = {1, ..., m}, i.e. ei =

∑m
j=1 aijφ(xj)

where the coefficient aij is the j-th component of the eigen-
vector ai corresponding to the i-th largest eigenvalue λi

of the m × m matrix K defined by Ka = λa where
kij = (φ(xi) • φ(xj)) = k(xi, xj). Each ai is normalized
to satisfy λi(ai, ai) = 1 The projection of the mapped φ(x)
onto the i-th orthonormal basis vector ei of the nonlinear
subspace base can be computed by the following equation
via the kernel trick: (φ(x), ei) =

∑m
j=1 aijk(x, xj)

3.2 Kernel K-subspaces Clustering

The purposed Kernel K-subspaces Clustering(Kernel-
KsC) algorithm assigns each input pattern to its nearest non-
linear subspace base. Denote D(x, S) as the difference be-
tween an input pattern in the transformed space φ(x) and its
reconstruction using a nonlinear subspace S with the corre-
sponding orthonormal basis vector defined in Section 3.1.
Here we only keep the first d basis vectors the nonlinear
subspace S with higher eigenvalues. Then

D(x, S) = φ(x)−ΘS(ΞS(φ(x))) (2)

where ΞS(φ(x)) ∈ Rd is the projection of φ(x) onto the
nonlinear subspace S and ΘS(ΞS(φ(x))) is its reconstruc-
tion. Denote the d dimensional nonlinear subspace S as

S = [e1, ..., ed] (3)

= [
m∑

j=1

a1jφ(xj), ...,
m∑

j=1

adjφ(xj)]

then

ΘS(ΞS(φ(x))) (4)

= [
m∑

t=1

a1tφ(xt), ...,
m∑

t=1

adtφ(xt)]×

[
m∑

s=1

a1sφ(xs), ...,
m∑

s=1

adsφ(xs)]T φ(x)

= [
m∑

t=1

a1tφ(xt), ...,
m∑

t=1

adtφ(xt)]×

[
m∑

s=1

a1sφ(xs) • φ(x), ...,
m∑

s=1

adsφ(xs) • φ(x)]T

= [
m∑

t=1

a1tφ(xt), ...,
m∑

t=1

adtφ(xt)]×

[
m∑

s=1

a1sk(xs, x), ...,
m∑

s=1

adsk(xs, x)]T

Here the inner product in the transformed space , which is
difficult to compute due to the inherently high or infinite
dimension of the transformed space, is implemented via the
kernel trick. After some algebraic derivations, we obtain:

ΘS(ΞS(φ(x))) (5)

=
m∑

t=1

{
d∑

r=1

art

m∑
s=1

arsk(xs, x)}φ(xt)

=
m∑

t=1

Btφ(xt)

where

Bt =
d∑

r=1

art

m∑
s=1

arsk(xs, x), t = 1, ..., m (6)

So from the definition of equation2

D(x, S) = φ(x)−
m∑

t=1

Btφ(xt) (7)

For the sake of clearness, we represent x as x0 and let B0

equals to the value of −1, then

D(x, S) = −
m∑

t=0

Btφ(xt) (8)

That is to say, the difference vector D(x, S) can be written
in the form of linear combination of nonlinear transformed
input patterns. The square of the length of the difference
vector D(x, S) can be computed using the inner product as
follows:



‖D(x, S)‖2 =
m∑

i=0

m∑

j=0

BiBjφ(xi) • φ(xj)

=
m∑

i=0

m∑

j=0

BiBjk(xi, xj)

(9)

Based on the definition of the distance between input pat-
terns in the transformed space and nonlinear subspace
bases, we can define the objective function to be minimized
as follows:

K∑

i=1

∑

ρ(xj)∈i

‖D(xj , Si)‖2 (10)

The iteration procedure of the proposed Kernel K-subspaces
Clustering (Kernel-KsC) method can be described as fol-
lows:

Algorithm 2: Kernel K-subspaces Clustering(Kernel-
KsC)

1. Initialization: Starting with an initial labeling of the
input image pattern {x1, ..., xn} into K clusters. Compute
the nonlinear subspaces Si, i = {1, ..., K} of the corre-
sponding data with label i via kernel principal component
analysis defined in Section 3.1;

2 Points assignment: Denotes ρ(xi) as the cluster label
for point xi. Then each point is assigned a new label as
follows:

ρ(xi) = argmink‖D(xi, Sk)‖2 (11)

where k ∈ {1, ..., K}. The ‖D(xi, Sk)‖2 can be computed
using equation 9;

3 Non-linear subspaces update: Update each nonlinear
subspace bases Si, i ∈ {1, ..., K} using the new label infor-
mation via kernel principal component analysis;

4 Repeat step 2 and 3 until convergence. The iteration
procedure will stop if the change of the value of the objec-
tion function is small enough, or equivalently if the label
information does not change anymore in two successive it-
eration steps.

The iterative procedure of the proposed Kernel-KsC al-
gorithm implement appearances clustering by assigning
each input pattern(the vector form of the original 2D im-
age matrix) according to the underlying nonlinear subspace
distribution structure, which is a more accurate description
of the real life data than its simple linear counterpart. Thus
a higher correct clustering rate can be achieved, which will
be demonstrated in the next section. The correct clustering
rate can be defined as:

K∑

i=1

τi/n (12)

where n denotes the total number of images and τi de-
notes the maximum number of images with the same true
identity clustered into the class i.

4 Experimental results

We used the CMU PIE database[8] and the Yale Face
Database[9] as the test sets for performing unsupervised ap-
pearance clustering under varying illumination conditions.
We compared the clustering performance of the proposed
nonlinear kernel K-subspaces method with that of its linear
counterpart. The iteration procedures of both algorithms
were initialized using the gradient affinity based spectral
clustering method proposed in [7]. For both of the data
sets, the proposed nonlinear K-subspaces clustering method
achieves satisfactory clustering results and outperforms its
linear counterpart. The detail of the experiments will be
given below. We use the Gaussian kernel function[10] in all
the following experiments.

For the CMU PIE database, we used a subset of 40
frontal or near-frontal images of 68 individuals which were
taken under different illumination conditions. Figure 1(a)
shows the sample image sets for two specific subjects. First,
the resolution of the original images are resized from orig-
inal 32 × 32 pixels to 16 × 16 pixels and the range of im-
age intensities are normalized to {0, 1}. Then the gradient
fields are computed and the spectral clustering was imple-
mented using the similarity measurement matrix . After
initialization, the proposed nonlinear Kernel K-subspaces
Clustering (Kernel-KsC) and Linear K-subspaces Cluster-
ing (Linear-KsC) algorithms are implemented respectively.
Although there are several studies show that the number of
cluster centers can be selected automatically by analyzing
the distributions of the corresponding eigenvalues such as
in [12], in this paper we assume the number of clusters,
i.e. K, is known in advance since the emphasis of this
work is to show the superiority of the proposed Kernel-
KsC algorithm, which is a nonlinear extension to the origi-
nal Linear-KsC algorithm by exploiting the inherent non-
linear distribution property in the input patterns, over its
linear counterpart. Figure 2(a) and (b) show the objective
function value during iteration procedure for the proposed
nonlinear K-subspaces clustering algorithm and the origi-
nal K-subspaces clustering algorithm, respectively. Figure
2(c) shows the correct clustering rate comparison of the two
methods during iteration. Although the appearance varia-
tion of the same person is fairly large due to the varying il-
lumination conditions,the proposed nonlinear K-subspaces
clustering method achieved satisfactory clustering results
and outperforms its linear counterpart greatly.

The Yale B database used in our experiment consists of
450 images with 45 frontal images of each person captured
under varying light directions. Figure 1(b) shows sample
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Figure 2. Experimental results for PIE database:(a) and (b)are the objective function values as a
function of the number of iterations for Linear-KsC and Kernel-KsC,respectively. (c) shows correct
clustering rate comparison of the two methods during iteration.
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Figure 3. Experimental results for YaleB database:(a) and (b)are the objective function values as a
function of the number of iterations for Linear-KsC and Kernel-KsC,respectively. (c) shows correct
clustering rate comparison of the two methods during iteration.

images of two persons from these subsets. Each image is
resize to resolution of 16 × 14 pixels and initialized using
the same method as for the PIE database. Figure 3 show the
experiment results.

Both of the above experiments clearly show that nonlin-
ear K-subspaces and linear K-subspaces method converge
quickly in just several iteration steps. And the proposed
nonlinear kernel-based K-subspaces clustering algorithm
achieves much lower error rate than the linear K-subspaces
clustering algorithm.

5 Conclusions and future work

This paper studies the problem of appearance clustering
under varying illumination conditions and a novel nonlin-
ear kernel K-subspaces clustering algorithm is presented.
The proposed Kernel-KsC algorithm further extends the
original K-subspaces clustering algorithm to the nonlinear

case since inherently the distribution of the real life im-
age data has a complex nonlinear structure rather than sim-
ple linear case. Firstly, the input space is mapped into a
high-dimensional feature space using nonlinear mapping
function. Then the nonlinear subspaces are extracted in
the feature space and distances between the mapped fea-
ture points and those nonlinear subspaces are computed
via inner products by kernel trick. Experiments on several
real life data sets show that the proposed nonlinear kernel
K-subspaces clustering algorithms converges quickly and
achieves higher clustering rate that that of the original linear
K-subspaces clustering algorithm.

Besides successful applications in computer vision
community, recently subspace clustering algorithm also
achieves successes in other areas such as data mining and
bio-informatics, where the data may also have inherent non-
linear properties. We believe that the proposed kernel-
based nonlinear subspace clustering algorithm can outper-



form its linear counterpart for those problems. The appli-
cation of the proposed nonlinear K-subspaces clustering in
other fields might be future research directions.
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