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Abstract

Dynamic time warping (DTW) has been widely used for the alignment and comparison of two sequential patterns.
In DTW, dynamic programming is used to avoid an exhaustive search for the alignment. In this paper, we propose a
randomized extension of the DTW concept, termed randomized time warping (RTW), for motion recognition. RTW
generates time elastic (TE) features by randomly sampling the sequential data while retaining the temporal infor-
mation. A set of TE features is represented by a low-dimensional subspace, called the sequence hypothesis (Hypo)
subspace, and the similarity between two sequential patterns is defined by the canonical angles between the two cor-
responding Hypo subspaces. In essence, RTW simultaneously computes multiple degrees of similarities between a
number of warped patterns’ pair candidates, while in practice, RTW generalizes the Hankel matrix commonly used in
modeling of system dynamics. We demonstrate the applicability of RTW through experiments on gesture recognition
using three public datasets, namely, the Cambridge gesture database, a subset of the one-shot-learning dataset from
the ChaLearn Gesture Challenge, and the KTH action dataset.
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1. Introduction

Dynamic time warping (DTW), which is also termed
dynamic programming-matching, has been widely used
for sequential data analysis. Early uses of DTW range
from the comparison of amino acids sequences in bioin-
formatics [1], through speech recognition [2], to motion
analysis [3]. The core idea of DTW is to search for the
best alignment of two sequential patterns by optimizing
a warping function, which specifies the sequential cor-
respondence between them. Since the number of pos-
sible combinations of warped patterns is exponentially
large, to avoid exhaustive search dynamic programming
has been used, which can effectively optimize the align-
ment score and produce the alignment path of the most
similar warped patterns.

Although DTW is a very useful and widely applica-
ble tool for sequence analysis, it has several limitations
when applied to tasks of classifying multiple sequences,
such as gesture recognition with many kinds of hand
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shapes and personal identification by gait recognition.
Here are the issues that we will address in this paper.

1. Since dynamic programming is basically a deter-
ministic approach, the obtained solution is likely
to be sub-optimal for the sequential data that con-
tains large intra-variation in the temporal structure.

2. The alignment is typically done by trying to match
an input sequence to each reference sequence in a
given set. This can lead to a high computational
cost when the number of the reference sequences
to be considered is large.

3. DTW has no internal mechanism to remove or ig-
nore irrelevant variation that may affect the classi-
fication result. For example, variation of lighting
conditions in video data or speakers in speech data
can significantly lower the performance of a clas-
sification method using DTW. That is, DTW-based
classification methods are sensitive to these unde-
sirable effects.

To tackle these issues, we generalize the notion of
DTW to construct a new method for sequential data
analysis, which is termed randomized time warping
(RTW). The core idea of RTW is essentially to simul-
taneously search for the most similar warped patterns
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Figure 1: Comparison between DTW and RTW. (a) DTW searches for the most optimal alignment in a large space through dynamic programming.
The outputs of DTW are the most similar warped patterns and the cost of the alignment. (b) RTW generates many candidate warped patterns, called
time elastic (TE) features, and then compares the sets of the candidates. The outputs of RTW are multiples of the highest similarities between the
two sets.

from a number of candidates which are prepared be-
forehand through randomization. Figure 1 illustrates the
difference between DTW and our RTW approach.

Instead of searching for the most similar warped pat-
terns using dynamic programming, RTW progressively
generates a set of time warped patterns, called time
elastic (TE) features, through repeated random sub-
sampling while preserving the original temporal order.
We utilize this bagging-like strategy to ensure that the
set of the TE features contains sufficient discriminative
frames with high probability. The use of TE features
converts the comparison of two sequences to the com-
parison of two sets of TE features. Figure 2 shows the
comparison process between two sets of the TE fea-
tures. The comparison is conducted using a subspace-
based method, in which each set of TE features is rep-
resented as a low-dimensional subspace, called a se-
quence hypothesis (Hypo) subspace. Finally, the sim-
ilarity between the two sequences is defined by the av-
erage of multiple canonical angles θi between the two
Hypo subspaces. We regard the canonical vectors that
form the canonical angles as pseudo-warped patterns
(Further discussion is provided in Section 3.2). This ap-
proach can provide a promising solution to each of the
DTW issues previously mentioned:

1. Since random sampling is able to generate a large
number of time warped patterns (TE features), our
RTW approach is non-deterministic and can deal
with a huge number of possible combinations of
warped patterns with various time-scales, and thus
is able to tackle the issue with large intra-variation
in the temporal structure.

2. Since our approach uses the compact subspace-
representation, exhaustive matching between all
possible TE features is avoided. Each Hypo sub-
space can contain the TE features from multiple
sequences and the canonical angles between two
subspaces can be calculated with simple linear al-
gebra. Hence RTW can alleviate the issue of high
computational costs.

3. Our approach is based on a subspace method,
which can remove or reduce the undesirable ef-
fects of irrelevant features. This enables RTW to
mitigate the third issue and thus improve the per-
formance of classification

To demonstrate the effectiveness of our approach, we
focus on gesture recognition in this paper. We con-
ducted experiments on gesture recognition using three
public datasets, namely, the Cambridge hand gesture
dataset [4] which contains variations of lighting con-
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Figure 2: The comparison process for two sets of TE features in RTW.

dition, a subset of ChaLearn gesture dataset [5] which
contains very limited training samples, and the KTH
action dataset [6] which is a widely used benchmark
dataset for action recognition. In addition, we also
demonstrate the extensibility of RTW by including a
subspace learning method using Grassmann discrimi-
nant analysis [7].

In the next section, we start with a review of subspace
methods for gesture recognition, which is followed by a
review of related works on DTW. Then we describe how
RTW tackles the DTW issues and the relationship to the
Hankel matrix in Section 3. The classification frame-
work of RTW is provided in Section 4. An adaptation
of Grassmann discriminant analysis in the classification
framework is discussed in Section 5. Experimental re-
sults are reported in Section 6. Finally, conclusions and
indication of future work are given in Section 7.

2. Related work

Although we regard the concept of RTW as a gen-
eralization of DTW, the practical process of RTW is
partly related to other types of methods such as sub-
space methods and the methods based on canonical cor-
relation analysis (CCA). In the following, we first re-
view such related methods, including the extensions
of the original DTW. Then we describe several DTW-
based methods for gesture recognition.

In the usage of CCA-based methods, to encode the
space-time volume of a gesture, [4] used a third-order
tensor-based CCA with AdaBoost for feature selection.
In [8], the tensor was factorized into a set of tangent

spaces, to which the classification of the video was ap-
plied. In [9], two types of subspaces representing ac-
tivity motion were developed, one from the images of
a sequence and the other from linear autoregressive-
moving-average models. Then the classification was
done on a Grassmann manifold, on which each subspace
was interpreted as a point. In [10], dynamic systems of
motions were modeled by Hankel matrices of extracted
features. Then subspaces spanning the columns of the
Hankel matrices were obtained by using discriminant
canonical correlation [11], and finally support vector
machines were used for classification. However, these
subspace-based methods can suffer when there is only a
small number of training samples.

In the development of DTW, stochastic DTW was
proposed in [12] to tackle the intra-variation problem in
speech recognition. In stochastic DTW, the distances
and path costs of conventional DTW were replaced
with conditional probabilities and transition probabil-
ities, respectively. Stochastic DTW shows that the
DTW method is strongly related to the hidden Markov
model (HMM) approach [12]. In sequential data analy-
sis throughout the years, HMMs have been favored over
DTW due to their better generalization to sets of sam-
ples, in which exhaustive pair-wise comparison can be
avoided [13]. This also led to the development of statis-
tical DTW, which is equivalent to the HMM approach
and generates a statistical model from the set of sam-
ples [14, 13]. However, HMMs require many assump-
tions in generalizing the system dynamics of time-series
data [10]. To avoid these difficulties, the Hankel matrix
was used to approximate HMMs, especially in system
identification tasks [15, 16]. In Section 3.3 we discuss
how, in the implementation of RTW, the matrix of TE
features can be regarded as a generalization of the Han-
kel matrix.

Applications of DTW to gesture recognition have
been reviewed in several survey papers [17, 18, 19].
Recent extensions of DTW include the method in [20],
called Isotonic CCA, which generalized the concept of
DTW by imposing a monotonicity constraint on CCA.
Canonical time warping (CTW) in [21] combined DTW
with CCA to take spatial variability into account in the
alignment process. In [22] DTW was extended to gener-
alized time warping (GTW), which used multiple CCA
to find an optimal nonlinear temporal transformation
and a low-dimensional space embedding of multiple
multi-modal sequences. The ideas behind [20, 21, 22]
may be used to enhance the performance of DTW. How-
ever, as in classical DTW, the computational cost in-
creases rapidly with the number of reference sequences
to be compared.
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3. Randomized time warping

First, we demonstrate that TE features have valid sta-
tistical properties as a key component of the framework
of RTW in Section 3.1. Then we describe how to simul-
taneously compute multiple similarities between two
sets of TE features in Section 3.2. Finally we discuss
the relationship of the matrix from the set of the TE fea-
tures with the Hankel matrix in Section 3.3.

3.1. Statistical properties of time elastic features
To deal with large intra-variation of temporal struc-

ture, we require features to cover both the local and
global information of the temporal structure: global in-
formation accommodates the overall temporal structure;
local information deals with fragments of the temporal
structure.

In the following, we show that a set of TE features
has such favorable properties. We consider a set of im-
age sequences each of which consists of a number of
ordered images. Nevertheless, the following discussion
can easily be generalized to other types of data.

Let {x1, . . . , xN(s) } be the ordered data of sequence s,
where N(s) is the length of the sequence. Let xi ∈ R f

be the original feature vector of an image. An f × n-
dimensional TE feature vector s = [yT

1 yT
2 ... yT

n ]T is cre-
ated by randomly selecting n images from a sequence s,
such that y1, . . . , yn ∈ {x1, . . . , xN(s) }, t(y1) < ... < t(yn),
where t(·) denotes the original order of the image. The
value of n, which denotes the number of image selected
to construct a TE feature, also corresponds to the num-
ber of effective frames needed for recognition, which
has been studied in [23].

In statistics, t(y1) is the random variable for the min-
imal image order of the n images selected into s, and
t(yn) is the maximal order. That is, t(y j) is the jth
order statistic for the TE features and is in the set of
{ j, . . . ,N(s) − n + j}. Over this support, the probability
that t(y j) = k can be written as

Pr(t(y j) = k) =

(
k−1
j−1

)(
N(s)−k

n− j

)
(

N(s)

n

) . (1)

The probability mass functions for t(y j), j = 1, . . . , n,
are shown in Figure 3 where n = 5 and N(s) = 10. This
describes a statistical mechanism for the extraction of
TE features, applicable over the whole sequence rather
than constrained to a local neighborhood. Images lo-
cated near the edges of a motion are most likely to be
selected as the start and end blocks of a TE feature. This
indicates that we are able to collect the global struc-
tures of temporal information as well as local temporal
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Figure 3: The probability for each image from a sequence of
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Figure 4: The probabilities of frame ranges for the selected images.

structures. The probability of a TE feature containing a
frame range r, for r = n− 1, . . . ,N(s) − 1, can be formu-
lated as

Pr(t(yn) − t(y1) = r) = (N(s) − r)

(
r−1
n−2

)(
N(s)

n

) . (2)

As an illustrative example, Figure 4 shows the prob-
ability distribution of the frame range for the 5-block
(n = 5) TE features generated from a motion containing
10 images (N(s) = 10). The frame range indicates the
extent of the globality of the temporal information en-
coded in the TE feature. For example, the TE features
containing images ordered 1, 2, 3, 4, 5 and 2, 3, 5, 9, 10
have frame ranges of 4 and 8, respectively.

3.2. Simultaneous verification of multiple sequence hy-
potheses

Through the repetition of random sampling, we en-
sure that the set of the TE features contains sufficient
discriminative frames with high probability. However,
due to the randomness, not all the selected features in
the set contain discriminative information. We reduce
this redundancy by generating a subspace through ap-
plying principal component analysis (PCA) to the set of
the TE features in RTW.

Let the procedure of random selection described in
the previous subsection be repeated R times, such that
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we obtain s1, . . . , sR. Subsequently, a correlation-like
matrix A, which corresponds to the set of the TE feature
vectors, can be computed as

A =
1
R

R∑
i=1

sisT
i . (3)

We apply PCA to construct an N-dimensional subspace
by computing the eigenvectors [φ1, ...,φN] of the matrix
A. A set of TE features generated from a sequence con-
tains various possible warped patterns, each of which
corresponds to one hypothesis. In this sense, the sub-
space generated from a set of TE features is called a
sequence hypothesis (Hypo) subspace.

One advantage of using the Hypo subspace to rep-
resent the set of TE features is that we can deal with
multiple sequences. In the case when there are multi-
ple reference sequences that belong to the same class, it
is possible to represent the set of their TE features to-
gether in one Hypo subspace. Thus, the recognition of
an unknown sequence is more efficient, because it is not
necessary to compare the unknown sequence to every
reference sequence that belongs to the same class.

3.2.1. Computation of canonical angles
Next, we describe how to compute the similarities be-

tween two Hypo subspaces. The usage of canonical an-
gles for similarity measures is also known as the mutual
subspace method, a technique widely used in image-set-
based 3D object recognition [24, 25, 26, 27]. Let Pc be
an N-dimensional reference subspace of class c, and Q
be an M-dimensional input subspace. The first canoni-
cal angle θ1 is defined by

cos θ1 = max
ui∈Q

max
vi∈Pc

uT
i vi , (4)

subject to uT
i ui = vT

i vi = 1,uT
i u j = vT

i v j = 0, i , j.
A practical method of finding cos θi (i = 1, . . . ,M if
M ≤ N, and 0 ≤ θ1 ≤ . . . ≤ θM ≤

π
2 ) is by comput-

ing the singular values of the matrix W = UTV, where
U = [φ1, ...,φM], V = [ψ1, ...,ψN], and φi and ψi are
the orthogonal basis vectors of the subspaces Q and Pc,
respectively.

3.2.2. Importance of multiple canonical angles
The similarities between two Hypo subspaces are de-

fined by the cosines of the canonical angles θi. The first
canonical angle θ1 corresponds to the largest canonical
correlation between the two sets of TE features, which
can be interpreted as a distance between the two most
similar warped patterns in the two corresponding Hypo
subspaces. The second canonical angle θ2 corresponds

to the second largest canonical correlation between the
two sets of TE features, and so on. The use of only the
first canonical angle can lead to less stable recognition
performance, as in a DTW approach that considers only
the most similar warped patterns. This suggests that
multiple canonical angles are required in order to take
all possible warped patterns in the Hypo subspace into
consideration and to achieve more stable performance.
We use the average of the similarities of all canonical
angles as the final similarity:

S im(Q,Pc) =
1
M

M∑
i=1

cos2 θi . (5)

Since the multiple similarities between many warped
patterns are computed at the same time, we regard RTW
as essentially conducting multiple DTWs simultane-
ously.

Furthermore, a pair of canonical vectors ûi and v̂i that
form canonical angle θi can be obtained as follows:

ûi = Uyi, v̂i = Vzi, (6)

where yi and zi are, respectively, the left and right sin-
gular vectors of W. These canonical vectors can be
regarded as the most similar pseudo-time-warped pat-
terns generated through the linear combination of TE
features.

3.3. Relationship to the Hankel matrix

Conceptually, RTW generalizes DTW. In its imple-
mentation, RTW uses a matrix of the set of TE features,
which can also be regarded as a generalization of the
Hankel matrix.

The Hankel matrix H is defined as a matrix in which
the elements are skewed diagonally:

Hi, j = Hi−1, j+1 , (7)

where i and j are row and column indices, respectively.
In this approach, a column of the Hankel matrix con-
tains n blocks of the f -dimensional feature vector xi

from an image sequence, where xi (i = 1, ...,N(s)) in-
dicates the feature vector of the ith image of sequence s
and N(s) is the number of images in sequence s. The
value of n, which is the size of Hankel blocks, pa-
rameterizes the extent to which the temporal informa-
tion is encoded in one feature vector hi ∈ R f×n, where
hi = [xT

i xT
i+1 ... xT

i+n−1]T is the ith column vector of the
Hankel matrix H.

The form of the Hankel matrix with block size n cor-
responds to the RTW matrix formed by the set of TE
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Figure 5: A simple case of univariate reversed sequences and an in-
put sequence with noise. S A and S B are two sequences of different
dynamics which are exactly the reverse of each other. S I is an input
sequence with similar dynamics to S A but containing noise.

features with n images selected. The differences be-
tween these two matrices are as follows. Firstly, the
maximum number of features in the Hankel method
(number of columns) is given by N(s) − n + 1, while in
RTW it is given by

(
N(s)

n

)
. Secondly, the elements of the

Hankel matrix are generated by the rule shown in (7),
while in RTW the TE features are generated by random
sampling. These two differences suggest that the Han-
kel matrix requires a longer sequence and a much larger
number of training sequences than the RTW matrix to
generate a rich spatiotemporal dictionary of a motion.
Moreover, the Hankel matrix is able to contain only lim-
ited global temporal information about a motion, where
the extent of globality depends on the size of Hankel
blocks.

To demonstrate the advantage of the generalization
over the Hankel matrix, we consider the following sim-
ple case of toy data. Let S A = {1, . . . , 20} and S B =

{20, . . . , 1} be two reversed univariate sequential data
which belong to two different dynamics. Let S I be an
input sequence similar to S A but with noises, shown in
Figure 5.

A subspace can be used to model the Hankel ma-
trix [10]. The set of the TE features generalizes the Han-
kel matrix through the bagging-like random sampling.
This suggests that the matrix of the set of the TE fea-
tures contains the dynamical system with some pertur-
bation of the original dynamical system itself. Conse-
quently, subspaces generated from the set of the TE fea-
tures contain richer information than that from the Han-
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Figure 6: Similarity values between S A and S I and between S B and
S I , using the Hankel method and RTW, with 99% cumulative energy
ratio of PCA. With RTW, the similarities between S A and S I were
higher than those between S B and S I . With the Hankel method, when
the block size was small, the similarities between S A and S I were
almost the same as the similarities between S B and S I .

kel matrix and intuitively the subspace representation
is also suitable for capturing the information embedded
in the set of the TE features. We generated subspaces
from the Hankel representation and the set of the TE
features of S A, S B, and S I with various block parame-
ters (5, . . . , 15). The number of the random sampling for
RTW was set to 1000. Figure 6 displays the plot of the
similarity values when the dimensions of the subspaces
were determined by using 99% cumulative energy ratio
of PCA. Here, we can see that when using Hankel, the
similarity value between S I and S A and the similarity
value between S I and S B were almost the same when
the block size was small. Note that this happened be-
cause the full rank subspaces that span the trajectory of
S A and S B are overlapped each other. With the random-
ization in RTW, S I becomes more similar to S A than to
S B.

4. Flow of the recognition framework

Figure 7 shows the flow of the recognition process.
In this figure, R indicates the number of TE feature vec-
tors and Kc indicates the number of image sequences of
class c.

Training phase:

Step 1 : The random selection is applied to se-
quence 1 of class c to generate a set of TE

6



Figure 7: Flow of a recognition process using the RTW framework. TERMS, standing for time elastic random selection, corresponds to the random
sampling procedure for generating TE features.

feature vectors {s(1)
1 , ..., s(1)

R }. In the case that
there is more than one training sequence in one
class, this process is done for all Kc sequences
to produce a final set of TE feature vectors,
{s(1)

1 , ..., s(1)
R , s(2)

1 , ..., s(2)
R , ..., s(Kc)

1 , ..., s(Kc)
R }.

Step 2 : Reference subspaces P1, ...,Pc of classes
1, ..., c are constructed by applying PCA to the cor-
responding final sets.

Test phase:

Step 1 : Random selection is applied to the sequence
of an input motion I to generate a set of TE feature
vectors {s(I)

1 , s
(I)
2 , ..., s

(I)
R }.

Step 2 : Input subspace Q is constructed by ap-
plying PCA to the set of TE feature vectors
{s(I)

1 , s
(I)
2 , ..., s

(I)
R }.

Step 3 : The similarity between the input subspace Q
and each reference subspace Pc is computed as
in (5).

Step 4 : The input motion I is allocated to the class
with the highest similarity:

Class(I) = arg max
c

S im(Q,Pc) . (8)

5. Discriminant analysis of Hypo subspaces

RTW compares the subspaces of the sets of the TE
features that were generated through repetition of ran-
dom sampling, which is an ensemble-like strategy (i.e. a
bagging-like sub-sampling but without replacement).
The selected features from random sampling can con-
tain irrelevant features that do not contribute to clas-
sification. This suggests that the subspaces also con-
tain such features. To suppress the effect of this kind
of features, further feature extraction is required. In
this section, we briefly describe an adaptation of Grass-
mann discriminant analysis (GDA) [7] as one of sub-
space learning methods to improve the discriminative
power in the classification task.

A Grassmann manifold G(N, d) is defined as a set
of N-dimensional subspaces of Rd. Hypo subspaces
generated from the sets of TE features are considered
as points on a Grassmann manifold, where the canoni-
cal angles are the distances between them. By repeat-
edly generating a set of TE features through the random
sampling, we can generate multiple reference subspaces
that belong to the same class. Then, we apply dis-
criminant analysis that maximizes the variation between
classes and minimizes the variation within classes. Let
X = {xi}

n
i=1 and Y = {yi}

n
i=1 ∈ {1, . . . ,C} be a pair set of

samples and their class labels, respectively. Discrimi-
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nant analysis searches for a transformation matrix W by
maximizing the following function:

J(W) =
W>SbW
W>SwW

, (9)

where Sb =
∑C

c=1 nc(µc − µ)(µc − µ)> and Sw =∑C
c=1

∑
yi∈c(xi−µc)(xi−µc)> are the variance of between

classes data and the variance of within classes data, re-
spectively; nc is the number of samples in class c; µc and
µ are the mean of samples for class c and the mean of
all samples, respectively. W can be obtained by comput-
ing the corresponding eigenvectors of the C − 1 largest
eigenvalues of S−1

w Sb. To apply discriminant analysis
on a Grassmann manifold, kernel discriminant analy-
sis [28, 29] with the Grassmann kernel is used [7].

Let φ(x) be a function that map x to a Grassmann
space G. GDA searches for a mapping Ŵ : φ(x) → y
that maximizes the variance of between class data and
minimizes the variance of within class data. Since
data point φ(x) on a Grassmann manifold is basically
a Hypo subspace which has nontrivial representation,
we want to avoid a direct usage of φ(x). For this pur-
pose, we introduce a kernel function that defines the
distance between φ(xi) and φ(x j) as k(φ(xi), φ(x j)) =

‖φ(xi)>φ(x j)‖2F which can adopt either (4) or (5). Let
the solution be Ŵ = [ŵ1, . . . , ŵC−1] ∈ Rn×(C−1) and
ŵ j be written as a linear combination of the training
data ŵ j =

∑n
i=1 αi, jφ(xi). As the result, the mapped ith

reference Hypo subspace to the discriminant space is
yi = Ŵ>φ(xi) = α>Ki, where α is a matrix with size
n × (C − 1) and Ki is the ith column of a kernel ma-
trix K ∈ Rn×n with elements computed from the kernel
function k(φ(xi), φ(x j)). Equation (9) becomes

J(α) =
α>K(V − 1n1>n /n)Kα
α>K(In − V)Kα

, (10)

where 1n ∈ Rn is a vector with value of 1 in all of its
elements, and V is a block diagonal matrix with uniform
value of 1nc 1

>
nc
/nc in the c-th block. The solution of (10)

is solved in the same way as for (9).
When adapting GDA to the classification framework,

the procedure of the classification is slightly changed as
we need to generate multiple reference subspaces from
multiple sets of TE features of the same class to be
used in the GDA computation. In the classification pro-
cess, all the reference and input subspaces are mapped
to the discriminant space and the classification is then
performed by using k-NN based on the Euclidean dis-
tance between the mapping results [7].

Figure 8: Nine classes and five illumination settings in the Cambridge
gesture database [11].

6. Experiments

6.1. Cambridge gesture database

The Cambridge gesture database consists of 9 classes
of hand motions which were captured under 5 different
illumination settings, as shown in Figure 8. Each class
consists of 20 sequences with different numbers of im-
ages.

6.1.1. Experimental setup
We conducted an experiment using a setup similar to

that in [11, 10], except that in [11] and [10] the length
of each image sequence is normalized to a fixed num-
ber, while in our case the lengths can be different. The
shortest sequence length is 37 and the longest is 119.
We resized original images to be of 16 × 12 pixels and
used the grayscale pixel value as the image feature. As a
result, the dimension of vector xi was 16×12 ( f = 192).
The dimension of the TE feature vector si was 192 × n,
where n is the number of images obtained by random
selection. We used all 20 sequences in the normal il-
lumination setting (Set 5) for training, and the remain-
ing sequences in other illumination settings (Sets 1 to 4)
for testing. The total number of test sequences was 720
(9 classes × 4 sets × 20 sequences). If not specifically
mentioned in the experimental results, the dimension N
of reference subspaces was varied from 1 to 60 and the
dimension M of an input subspace was varied from 1
to 5. In the experiments using DTW, we first computed
the alignment cost between input sequence and the ref-
erence sequences. Then, we used k-NN of the alignment
costs to decide the class of the input sequence. The re-
sults reported here are the best among the parameter set-
tings.

6.1.2. Experimental results
Firstly, we evaluated the effect of the number of

canonical angles on the recognition performance. The
dimension of the input subspace was fixed at 10. The
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Figure 9: Influence of the number of canonical angles used.
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Figure 10: Ten pairs of canonical vectors that form 10 canonical an-
gles between the reference subspace of class 1 and an input subspace
of class 1. The average similarity is 0.52.

dimension of the reference subspace was varied from
10 to 60, and the best results are reported here. With
this setup, up to 10 canonical angles can be used for the
calculation of the similarity measure. The number of
selected images for one TE feature, n, was 10. The size
of the random selection, R, was 100. From the results
shown in Figure 9, we can see that using more than one
canonical angle is significantly better than using only
the first canonical angle, and the performance achieved
by using more than one angle is relatively stable.

To further validate the use of multiple canonical an-
gles, 10 pairs of canonical vectors, which formed 10
canonical angles between an input Hypo subspace of
class 1 and the reference Hypo subspaces of classes 1
and 2, are shown in Figures 10 and 11, respectively. In
the Cambridge dataset, class 1 is the gesture of a flat
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Figure 11: Ten pairs of canonical vectors that form 10 canonical an-
gles between the reference subspace of class 2 and an input subspace
of class 1. The average similarity is 0.48.

hand moving leftward, while class 2 is the gesture of a
flat hand moving rightward. From both Figures 10 and
Figure 11, we can see that the difference between the
pairs becomes more noticeable with an increase in the
order of the canonical vectors. This suggests that by
using multiple canonical vectors we can compare Hypo
subspaces more effectively than by using only the first
pair of canonical vectors.

Figure 12 shows the value of the similarity (the av-
erage of the cosines of the multiple canonical angles)
between an input Hypo subspace and each reference
Hypo subspace. The difference in the similarity be-
tween classes was very small when only the first canon-
ical angle was used: all the similarity values were close
to 1. In contrast, by considering multiple canonical
angles, the separation of the similarity values between
classes increased remarkably. For the rest of our exper-
iments, we used the average of all the canonical angles,
which produces approximately the best performance, as
shown in Figure 9.

Secondly, we investigated the effect of the number of
replicates in the random selection, R, by changing its
value to 5, 10, ..., 200. Figure 13 shows that the recog-
nition rate becomes stable when the value of R reaches
about 30.

Thirdly, we compared our proposed RTW method
with related methods [11, 8] including DTW-based and
the Hankel-based methods. In the case of the Hankel-
based method, we used several values of the Hankel
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Figure 12: Comparison of similarities between an input subspace of
class 1 and each reference class.
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Figure 13: Influence of the number of random selections R on the
performance of the proposed method.

block parameter, n, which corresponds to the number
of randomly selected images in RTW for one TE fea-
ture, ranging from 5, 10, 15, . . . , 30. The best results
for RTW were obtained with n = 15, while the Han-
kel method produced the best results with n = 20. In
RTW, the number of random selections R was set to
100. The experiments were repeated 5 times and we
computed the average recognition rate. From Table 1,
we can confirm that our proposed method outperformed
DTW significantly. The performance of DTW was very
poor because DTW does not consider variations other
than temporal structure. When we performed other ex-
periments for DTW using leave-one-out experimental
setting (i.e., 1 sequence from each class was picked for
the test, and the rest were used as templates), DTW
could achieve recognition rate of 87.3%. Despite the

Table 1: Recognition rates for the Cambridge gesture database [%].
Iso- Kim and Lui and

RTW DTW CCA Hankel Cipolla Beveridge
[20] [11] [8]

Set 1 95.6 52.8 44.4 94.4 81 93
Set 2 92.9 21.7 13.3 91.1 81 88
Set 3 92.2 26.1 21.1 94.4 78 90
Set 4 93.8 47.2 38.3 91.7 86 91
Avg. 93.6 36.9 29.3 92.9 82 91
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Figure 14: Computational time required to complete the classification
experiment on the Cambridge gesture dataset.

easier experimental setting, as the sequences with nor-
mal lighting conditions were also used as templates,
the recognition rate was still lower than RTW. When
we used Isotonic CCA by using the publicly available
code from [20], the recognition rate was worse than
DTW. We also tested with the publicly available code of
CTW [21] and GTW [22] but could not achieve better
results than those of [20], where the average recogni-
tion rate for CTW and GTW were 21.11% and 27.36%,
respectively. In addition, the proposed RTW method is
superior to other methods that used tensor representa-
tion [11] and tangent spaces [10]. It is also an advantage
that our RTW method can handle the unequal lengths
of image sequences which commonly exist in motion
videos. In contrast, it is difficult to deal with multiple
sequences that contain different numbers of images us-
ing the conventional methods from [11, 10].

Finally, Figure 14 shows the computational time re-
quired to complete the classification of 720 gestures in
the Cambridge gesture dataset. All implementations
were done using Matlab on Intel Xeon E5-2630 2.3Ghz
with 32GB RAM without using parallelization toolbox
and the images of the sequential data were already re-
sized into 12 × 16 pixel. DTW requires no training but
it took almost 96 seconds to complete the experiment
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(13.39ms per gesture). This is because DTW required
to do pairwise comparison between each input gesture
with many references. When using the Hankel-based
method and RTW with block size of 25, the time re-
quired to classify one gesture was about 5.17ms and
6.98ms, respectively. Although there is a slight trade-
off in terms of computational time when using RTW, we
consider that its recognition phase is still fast enough to
be used in a real time application. When conducting ex-
periments with Isotonic CCA, CTW and GTW, the time
required to complete the experiments were much more
than those of DTW, the Hankel based and RTW, as they
require to solve optimization problems that are compu-
tationally demanding.

6.2. ChaLearn gesture dataset

The experiments using the Cambridge gesture dataset
can be regarded as a case with adequate training samples
(20 training samples for each class. In this experiment,
we demonstrate the validity of the proposed method for
a case with limited training samples (one training sam-
ple for each class) by using the dataset from the One-
Shot Learning ChaLearn gesture Challenge [5]. The
dataset consists of up to 50,000 gestures captured us-
ing Microsoft Kinect, grouped into batches. Each batch
contains about 100 motions in 8 to 13 gesture cate-
gories. The training video contains one gesture, while
the test video contains 1 to 5 gestures conducted con-
secutively. In this experiment we merged 20 batches
of the development dataset for which the temporal seg-
mentation and the true labels are provided. Figure 15
shows some examples of motions from the dataset. In
the end, after discarding sequences that contain less than
15 frames, the number of classes was 178 and the num-
ber of test sequence was 1,557.

6.2.1. Experimental setup
As our focus was on how RTW could improve the

performance of conventional methods, we did not use
any complicated features. We used the baseline fea-
ture extraction of motion histograms of sequential depth
images, for which the code was provided by the Chal-
lenge [5]. First, a difference depth image is obtained
by subtracting two consecutive images. Then, the sub-
tracted depth image is rescaled and vectorized into a
192-dimensional motion histogram feature vector, and
the Hypo subspaces are generated by applying PCA to
the sets of TE features of the motion histogram feature
vectors. The dimensions of subspaces were varied from
1 to 60. However, since the subspace dimension of the
Hankel method was limited to N(s)−n, where N(s) is the

number of frames and n is the size of Hankel blocks, the
subspace dimensions for the Hankel method were set
to mins({N(s)}) − n. The number of random selections
R was set to 100. Again, the experiments using RTW
were repeated 5 times and the average recognition rate
is reported as the final result.

In the experiment, we also incorporated a subspace
learning method using Grassmann discriminant analysis
(GDA) [7] into the framework of RTW, as described in
Section 5. As in conventional linear discriminant anal-
ysis, GDA needs a lot of training samples. Since RTW
generates many TE features, we can provide multiple
sets of TE features from one sample sequence which can
be used to generate multiple reference Hypo subspaces
for the GDA.

6.2.2. Experimental results
Figure 16 summarizes the experimental results from

the ChaLearn gesture dataset. Using DTW, we achieved
a recognition rate of 63.5%. With Isotonic CCA [20],
we obtained a recognition rate of 59.7%. The best result
of the Hankel method, with a 72.8% recognition rate,
was achieved when using block size 3. We obtained the
best recognition rate of 73% when we used the proposed
TE features with 6 selected images. The experimental
results suggest that, DTW experiences difficulties when
there is only one training data item for each class. In the
Hankel method, the performance worsens when the size
of Hankel blocks increases; this could be due to the fact
that in this case the size of Hankel vectors that can be
generated from a motion becomes more limited. When
we used GDA with 3 subspaces (RTW+GDA3), we ob-
tained the best result of 74.2% when using block size 5.
When the number of the subspaces was increased to 5
(RTW+GDA5), the performance was almost the same
with that of the RTW+GDA3. From these results we
can see that the performance of RTW was improved by
incorporating a subspace learning algorithm in the clas-
sification framework.

Although our experimental results here is slightly op-
timistic, since we used the best results obtained from a
number of parameter choices, the performance is rela-
tively stable. Figure 17 shows a plot of the recognition
rate for various subspace dimensions. The performance
stabilized when the subspace dimension reached 30.

We note that the proposed method does not incor-
porate a function for motion segmentation as a pre-
processing, although it is possible. Thus, we could not
conduct a direct comparison of the proposed method
with other state-of-the-art methods with more compli-
cated functions, such as [30, 31, 32]. The performance
metric based on the recognition rate, which is used in
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Figure 15: Some examples of the depth image sequences of the ChaLearn gesture dataset from batch 1 class 8 (top), batch 2 class 8 (middle), and
batch 3 class 8 (bottom).
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Figure 16: Experimental results for the merged ChaLearn gesture
dataset.

our experiments, corresponds to that of the opposite of
the edit distance (the Levenshtein distance). This is be-
cause we used the ground truth segmentation and con-
sequently the edit distance is the same as the number of
miss-classifications (error rate or 1 - recognition rate).
We consider the incorporation of a segmentation func-
tion into our framework and the comparison with the
other more complicated methods as one of the future
works.

6.3. KTH action dataset
In this section, we demonstrate the performance of

the proposed method using the widely used KTH ac-
tion dataset [6]. The KTH action dataset [6] consists of
six actions: boxing, hand clapping, hand waving, run-
ning, jogging, and walking, conducted by 25 subjects
under four scenarios: outdoors, outdoors with variation
of zooming, outdoors with different clothes, and indoor.
In total there are 2, 391 sequences of actions.

6.3.1. Experimental setup
We used the leave-one-out cross validation (LOOCV)

scheme, where one sequence was used as the test in-
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Figure 17: Plot of recognition rate against the dimension of subspace.
The blue and red dashed lines are the plots for RTW+GDA3 and
GDA5 with TE block size 5, respectively. The green solid line is
the plot for RTW with TE block size 6.

put and the rest as the training sequences. For each
sequence, we used the bounding box from [33] to do
segmentation between actions and resize each original
frame to a 16 × 16 pixels grayscale image. We used
the raw pixel values with additional information of the
height and width of the bounding box of the subject, re-
sulting in a 258-dimensional vector for each frame. We
then generated a subspace from each sequence through
either the Hankel based method or RTW. The number
of the random sampling and the block size were empir-
ically set to 500 and 5, respectively. The dimension-
ality of the subspaces was set in the same manner as
our Chalearn gesture experiment. GDA was adopted as
the subspace learning method for both the Hankel and
RTW.

6.3.2. Experimental results
Table 2 shows the experimental results for the KTH

action dataset. The proposed RTW method achieved
recognition rate of 93.39%, outperforming the Hankel
method and the established methods in [35, 34]. Our
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Table 2: Recognition rates for the KTH action dataset using LOOCV.
Methods Recognition Rate [%]
Hankel (block size 5)+GDA 91.97
RTW (block size 5)+GDA 93.39
Zhang et al. [34] 90.2
Jiang et al. [33] 93.43
Wang et al. [35] 92.43

proposed method has achieved the same level of per-
formance as [33]. In this comparison, we should note
that [33] used a sophisticated shape-motion descriptor
that requires multiple processing steps such as silhou-
ette extraction and optical flow computation.

7. Conclusions and future work

In this paper we have proposed RTW, which is a very
simple yet effective generalization of the DTW concept,
using random sampling, subspaces and multiple canon-
ical angles for classification of sequential data. The ma-
trix of the set of TE features can also be regarded as
a generalization of the Hankel matrix. The proposed
method addresses the issues of classical DTW, as well as
the common issue of lack of training samples that most
existing approaches are struggling with. The effective-
ness of the proposed method was demonstrated through
experiments on the Cambridge gesture database, a sub-
set of the ChaLearn gesture dataset, and the KTH action
dataset.

While RTW does not output alignment path, RTW
produces multiple similarities and canonical vectors
which we regard as the most similar pseudo-warped pat-
terns. One task that we have to do is to investigate fur-
ther the relationship between the canonical vectors and
the alignment path in DTW. It is also desirable to know
the optimal number of frames or images needed for con-
stituting an effective TE feature vector. We regard this
as one of our future works.

We focus on the basic idea of RTW, which combines
the random sampling approach with the subspace-based
method to act as a generalization of DTW in the concep-
tual level and the Hankel matrix in the implementation.
For this reason, we did not use complicated represen-
tation of an image and thus also did not compare the
proposed method with the state-of-the-art action recog-
nition methods. Our experimental results can be consid-
ered as the baseline performance of RTW. There is room
for improving the proposed method. The TE features
generated by random selection may contain some in-
formation that does not contribute much to recognition.
Such information can be better suppressed by apply-
ing or developing more sophisticated sampling schemes

and feature-extraction techniques. The former includes
developing content-based adaptive sampling, which we
will consider as a future work; the latter includes non-
linear subspace-based and discriminative learning meth-
ods [7, 26], as demonstrated in our experiments on the
ChaLearn gesture dataset and the KTH action dataset.
Moreover, adopting sophisticated feature extraction for
each frame or a group of frames such as [33] prior to
the random sampling is also one direction which may
further improve the capability of the proposed method,
especially for categorizing actions in challenging situa-
tions.
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