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Abstract. This paper proposes a method for classifying 3D objects with
similar appearances using different types of features from multi-view im-
ages. We can find this type of task in various practical applications, such
as flaw inspection of industrial components, quality checking, ans screen-
ing of fruits and vegetables. In this paper, as an example such a concrete
task, we will deal with the problem of classifying apples, a task that
is difficult even for human vision. To tackle this task, we will introduce
the mutual subspace method (MSM)-based methods as a weak classifiers
in an ensemble learning framework. In addition, we will consider three
types of features: shape, texture and color in the terms of invariants of
position and scale, as input vectors of each MSM-based classifier. The
effectiveness of the proposed method will be demonstrated through the
results of evaluation experiments using 100 apples.

1 introduction

Many view-based methods have been proposed for 3D object recognition, which
is one of active research areas in computer vision[1]. Several investigations into
the issue suggest the effectiveness of utilizing rich information obtained from
multi-view images to achieve high-performance[2]-[6].

The mutual subspace method (MSM) has the ability to handle multiple im-
ages, including sequential images or multi-view images, and so is suitable and
efficient for recognizing 3D objects. Let an n × n pixel pattern be treated as
a vector x in n2-dimensional space. In MSM, the set of patterns of each class
is represented by a low-dimensional linear subspace using Karhunen-Loève(KL)
expansion, also known as principal component analysis (PCA). The classifica-
tion of a set of patterns is executed based on the canonical angles θ between
subspaces, P and Q, where smaller angles indicate higher similarity between the
two subspaces as shown in Fig. 1.

MSM and its extensions, CMSM[4] and OMSM[5], have been successfully
applied to various practical applications, such as face recognition[6], ISAR image
analysis[7], and lip reading[8]. The successes in face recognition are especially
noteworthy. However, face recognition may be a relatively easy classification
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Fig. 1. Similarity between two distributions of multi-view image patterns.

problem, considering that it can be easily executed by human vision. This leads
us to the question, how well the MSM-based methods perform in classifying
3D objects with appearances so similar that even human vision has difficulty
classifying them? There are many types of 3D objects with such characteristics
in various practical applications; flaw inspection of industrial component, quality
checking, and screening of fruits and vegetables[9][10].

In this paper, we consider the challenging problem of classifying 100 apples
as a representative task. As shown in Fig. 2, even human vision has trouble clas-
sifying them as the number of apples increases. If MSM-based methods achieve
high performance in this task, it should indicate a potential applicability to the
classification of other objects with very similar appearances.

Face recognition systems based on MSM-based methods have achieved high
performance by using only single appearance feature. However, to perform more
difficult tasks such as those described above, it is necessary to use multiple
feature types obtained from multi-view images, and use them by considering
their characteristics. We consider three types of features: shape-type(P-type
Fourier Transform descriptor[11]), texture-type(2D FFT power spectrum, view,
HOG[12], HLAC[13]) and color-type(color histogram) in the terms of invariants
of position and scale. These are used as input vectors for each MSM-based meth-
ods. Then the multiple classification results from all the MSM-based methods
are combined in a ensemble learning framework.

The rest of the paper is organized as follows. Section 2 outlines an our
method, including the algorithms of the MSM-based methods. Section 3 demon-
strates the effectiveness of our method through evaluation experiments using 100
apples. Section 4 presents our conclusions.
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Fig. 2. Multi-view image patterns of apples.

2 The proposed method

In this section, we first describe the algorithm of the MSM-based methods, MSM,
CMSM and OMSM before discussing various feature types extracted from multi-
view images in the term of invariant of position and scale. Then, we combine
the results of all the MSM-based classifiers using different feature types in the
framework of the ensemble learning.

2.1 Mutual Subspace Method (MSM)

As mentioned in Sec. 1, MSM measures the similarity between the distributions
of reference patterns and input patterns by using canonical angles between two
subspaces. These canonical angles can be calculated by the following procedure.

Given an m-dimensional subspace P and an n-dimensional subspace Q (as a
matter of convenience m ≥ n), the n canonical angles {0 ≤ θ1, θ2, .., θn ≤ π/2}
are determined as shown in Fig. 1. The first canonical angle is the smallest angle
between the two subspaces and the second canonical angle is the smallest angle
along the direction orthogonal to the first canonical angle. cos2θi for i = 3, . . . , n
are calculated similarly. The canonical angles θi between P and Q are uniquely
defined as :

cos2 θi = max
ui ⊥ uj(j = 1, 2, ..., i − 1)
vi ⊥ vj(j = 1, 2, ..., i − 1)

(ui · vi)2

∥ ui ∥2∥ vi ∥2
, (1)

where ui ∈ P,vi ∈ Q.
Let Φi and Ψi denote the i -th n-dimensional orthonormal basis vectors of the
subspaces P and Q, respectively. These orthonormal basis vectors can be ob-
tained as the eigenvectors of the autocorrelation matrix

∑l
i=1 xixT

i calculated
from the l learning patterns {x} of each class.
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A practical method of finding the canonical angles is by computing the ma-
trix X=AT B, where A = [Φ1, . . . ,Φm] and B=[Ψ1, . . . ,Ψn]. Let {κ1, . . . , κn}
(κ1≥, . . . ,≥ κn) be the singular values of the matrix X. The canonical angles
{θ1, . . . , θn} can be obtained as {cos−1(κ1), . . . , cos−1(κn)}.

2.2 Definition of similarity

The similarity between two subspaces is defined as

S[n′] =
1
n′

n′∑
i=1

cos2 θi , (2)

where n′ is the number of canonical angles used for calculating the similarity.
The value S[n′] reflects the structural similarity between two subspaces. In cases
in which two subspaces coincide completely with each other, S[n′] is 1.0, since
all canonical angles are zero. The similarity S[n′] becomes smaller as the two
subspaces separate. The similarity S[n′] is zero, only when the two subspaces
are orthogonal to each other.

2.3 Extensions of MSM: CMSM and OMSM

In order to improve the performance of MSM, it has been extended to the con-
strained mutual subspace method (CMSM[4]) and the Orthogonal Mutual Sub-
space Method (OMSM[5]).

In CMSM, each class subspace is projected onto a discriminant space referred
to as the constraint subspace D. This projection extracts a common subspace of
all the class subspaces from each class subspace, such that the canonical angles
between class subspaces are enlarged to approach orthogonal relation. Given the
projection matrices Pi(i = 1, 2, ..., k) of k classes, the constraint subspace D is
spanned by the eigenvectors corresponding to the Nd-th smallest eigenvalue of
the following matrix:

G =
k∑

i=1

Pi . (3)

The dimension Nd is set experimentally.
OMSM also realizes the orthogonalization by Fukunaga and Koontz’s method

[14], so that it improves the performance of MSM. In their method, orthogo-
nalization is achieved by applying the whitening transformation matrix O to
the training patterns or orthonormal basis vectors of each class subspace. The
whitening matrix O is defined as

O = Λ−1/2BT , (4)

where Λ−1/2 is the diagonal matrix whose i-th component is the reciprocal of
the square root of the i-th highest eigenvalue of G. B is the matrix whose i-
th column vector is the eigenvector of the matrix G corresponding to the i-th
highest eigenvalue.
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2.4 Valid features extracted from multi-view images

The conventional MSM-based methods have mainly used the “view (appearance)
feature” that is obtained by raster scan of an image. However, the view feature
varies largely depending on the position and scale of an object. Thus, we can
predict that using only view feature is inadequate to classify similar 3D objects
with a high degree of accuracy. There are numerous features that we can extract
from multi-view images.

– Shape-type: P-type Fourier Transform descriptor(P-FT)
P-FT is based on the boundary-based shape descriptor, which is position and
scale invariant feature. However, it is not so robust with regards to variations
caused by shadows and illumination. When the number of objects is large,
its classification ability may decrease.

– Texture-type: HOG, HLAC, 2D-DFT descriptor(2D-DFT), view feature
HOG is based on the magnitude information of edges in local region. HLAC
is based on the autocorrelation between pixels in a local region. 2D-DFT
is obtained as low-frequency Fourier components of an image. HLAC and
2D-DFT are invariant to position. In contrast, HOG and view feature are
not invariant.

– Color-type: Color histogram
This type is widely used in image retrieval, as it is position and scale invari-
ant. However, when the number of apples increases, its classification ability
may drop.

As shown in Table 1, these features are classified into three types: shape,
texture and color. From this table, we can see that these characteristics are
mutually complementary. Therefore, it should be effective to utilize multiple
different feature types obtained from multi-view images in order to realize the
classification of many apples that have very similar appearances.

2.5 Ensemble learning

In this section, we construct the ensemble classification based on multiple MSM-
based classifiers with different kinds of features. Fig. 3 shows the flow chart of

Table 1. Characteristics of each feature

Shape Texture Color Position Scale
type type type invariant invariant

View o x x

HOG o x x

P-FT o o o

2D-DFT o o x

HLAC o o x

Color histogram o o o
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Fig. 3. Ensemble classification

the ensemble classification, which consists of a learning stage and a classification
stage.

Learning stage:
1. The multiple kinds of feature vectors {xf

i }(i = 1, . . . , C, f = 1, . . . , F ) are
extracted from learning multi-view images, where F is the number of feature
types and C is the number of classes.

2. The reference subspaces P f
i are generated from learning set {xf

i } using KL
expansion.

3. The above operations are executed for all the C classes.

Classification stage:
1. An input subspace Qf is generated from feature vectors extracted from input

multi-view images using KL expansion.
2. The similarity Sf

i between an input subspace Qf and reference subspace P f
i

is measured using MSM-based method.
3. The similarity Sf

i from feature f is normalized to Sf ′

i by dividing it by the
max similarity among {Sf

1 , . . . , Sf
C}.

4. The normalized similarities { S1
′

i , ..., SF
′

i } are combined by using 1
F

∑F
f ′=1 Sf ′

i .
This operation is executed for all the C classes.

5. The input set is classified as the class with the highest similarity.
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3 Experiments

In this section, we first describe the details of each feature extraction. Next, we
execute a preliminary experiment to evaluate the effectiveness of several features.
We then show the results of classification of 100 apples using a single feature
are shown. Finally, we demonstrate the effectiveness of using multiple different
types of features.

3.1 Details of each feature extraction

– P-type Fourier Transform descriptor (P-FT)[11]
The P-type Fourier descriptor is a representation of the object boundary. In
this experiment, we used 40 low-frequency components extracted from two
images, which were an original 320×240 pixel image and a half size 160×120
pixel image. The dimension of feature vector was set to 80(= 40 × 2).

– Color histogram feature
Color histogram was made by partitioning the red, green and blue axes into
16 regions. Histogram elements were divided by the number of pixels in the
object for normalization. A 96-dimensional feature vector was extracted from
the two images described in the explanation of P-FT.

– View base feature
A 768-dimensional feature vector was extracted from the 32 × 24 pixels
monochrome image converted from an input image.

– 2D Discrete Fourier Transform descriptor (2D-DFT)
The feature vector was obtained as the low-frequency components by ap-
plying the Fourier transform to an input image. A 198-dimenional feature
vector was extracted from the two images described in P-FT.

– Histograms of Oriented Gradients descriptor (HOG)[12]
A 32×24 pixel image converted from an input image was divided into cells of
8 × 8 pixels, and each group of 2× 2 cells was integrated into a block. Each
cell consisted of an 8-bin histogram of oriented gradients and each block
consisted of a vector of combined histograms of its cells.
The vector was normalized with respect to each block, and its dimension
was 32(= 8 × 4). The dimension of HOG was set to 192(= 32 × 6), as an
image had 6 blocks,

– Higher-order Local Auto-Correlation feature (HLAC)[13]
HLAC is defined as :

X(a1, ...an) =
∫

I(r)I(r + a1)....I(r + an)dr , (5)

where the nth-order autocorrelation functions with n displacements {a1, ..., an}.
I(r) denotes the pixel value of the image. Here, we restrict the order n up
to the second and restrict the range of displacements within a local 3 × 3
window.
The feature vectors (HLAC1) were extracted from the two images described
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in P-FT. The feature vectors (HLAC2) were extracted from an x-orient dif-
ferential image and a y-orient differential image, and the image size was
320 × 240. The dimensions of HLAC1 and HLAC2 feature were set to 70.

3.2 Preliminary experiment using five apples

Experimental conditions:
We collected multi-view images of apples by using a gathering system with an
IEEE1394 camera and a turntable as shown in Fig. 4. We captured multiple
images of an apple while rotating the turntable. This operation was repeated
three times for each apple. Note that the positions of the apples were different
for the three gatherings.

In the first gathering, two hundred images were captured at 1.8 degree inter-
vals around the entire circumference. These images were used as training data.
The reference subspaces were generated from these 200 images. In the second
and third gatherings, the multi-view images were captured at the 3.6 degree
intervals, while changing the range θ of the view angles from 36 degrees to 360
degrees, as in Fig. 4. We thus obtained the six test sets. The numbers of images
in the sets were 10, 13, 20, 25, 50, and 100. These images were used as testing
data. The dimensions of all the reference subspace were set to 10. The dimension
of the input subspace was set to 3.

Experimental results and discussion:
Fig. 5 shows the changes of the recognition rate against the range θ of the view
angles. We can see that the recognition rate increases as the range of view angle
widens. When the range θ was set to more than 90 degrees, the classification
rates of P-FT, 2D-DFT, color histogram and HLAC2 were over 90%. The rate
of HLAC2 was higher than that of HLAC1 when the range θ was small. On
the other hand, the rates of view feature and HOG were not particularly high
even when the range θ was set to 360 degrees. This difference indicates that
position invariant features are effective for MSM-based method in classification

Fig. 4. Gathering system of multi-view images of apples.
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Fig. 5. Recognition rate against the range θ of view angles

of 3D objects. From these results, for the next experiment using a large data set
we chose some position invariant features: P-FT, 2D-DFT, color histogram and
HLAC2 and the range θ of the view angles to 90 degrees.

3.3 Classification of 100 apples using a single feature

Experimental conditions:
We used the MSM-based methods (MSM, CMSM, OMSM) and k-NN method as
classifiers and compared their performances. An input subspace was generated
from 25 images obtained in the range θ from α to α+90 degrees. We changed the
start angle α at steps of 36 degrees. Such image gathering was executed twice,
and so the total number of the evaluation trials was 2000 (=10(=360/36) × 2
(two rotations) × 100 (number of apples)).

The reference subspaces were generated from 200 learning images. The di-
mensions of reference subspaces were set to 10. The dimension of the input
subspace varied from 1 to 5. The constraint subspace D and the whitening ma-
trix O were generated from learning data obtained from 20 apples that were
different from the 100 apples used in the above learning phase.

In k-NN method, we registered 10 vectors created by clustering of 200 training
data for each class. Given m input patterns, the output is determined by the
k × m voting result.

Results and discussion:
Table 2 and Table 3 show the experimental results. In the tables, the best recog-
nition rates are shown when the number of canonical angles, n′, in Equation 2,
varied from 1 to 5. The notation between brackets () indicates the value of n. In
the “classifier” column, the figures for “CMSM ” item indicate the dimension of
the principal component subspace M [4].
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Fig. 6. 40 of all the apples used in the experiments

Color
Classifier P-FT 2D-FT histogram HLAC

MSM 76.9(3) 89.75(4) 89.6(3) 54.9(5)

CMSM-1 85.6(3) 92.2(4) 94.55(1) 76.95(4)

CMSM-2 88.25(3) 93.4(4) 94.25(1) 94.9(2)

CMSM-5 88.25(2) 92.15(4) 94(1) 98.75(1)

CMSM-10 80.3(1) 90.65(4) 93(1) 99(1)

OMSM 82.2(5) 86.2(4) 98.45(1) 94.45(1)

NN 87.75 72.7 91.95 34.9

3-NN 79.4 69.35 83.4 28.85

5-NN 70.1 61.75 72.95 23.8

Table 2. Recognition rate of each classifier (%).

We compared the performances of all the classifiers. The performance of k-
NN was worst among them. We can see that the recognition rates of CMSM and
OMSM were largely improved in comparison with that of MSM. For example, the
performance of MSM using HLAC was extremely low, whereas even when HLAC
was used, the performance of CMSM and OMSM were extremely superior. This
result suggests that MSM lacks in the classification ability as compared with
CMSM and OMSM. None of the classifiers using P-FT achieved the rate of 90%.
The reason may be that the stable extraction of the contour of the apples was
affected by shadows. Color histogram feature had better performance for all the
methods in comparison with the other types of features. From the above results,
we can confirm that these four kinds of features have different characters for
classification of apples.
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Color
Classifier P-FT 2D-FT histogram HLAC

MSM 11.7(3) 6.2(4) 5.8(3) 21.7(5)

CMSM-1 8.4(3) 4.5(4) 4.1(1) 15.4(4)

CMSM-2 7.3(3) 3.9(4) 4.1(1) 17.9(2)

CMSM-5 7.7(2) 4.0(4) 5.1(1) 2.8(1)

CMSM-10 9.7(1) 4.4(4) 6.6(1) 1.6(1)

OMSM 10.8(5) 6.4(4) 8.9(1) 24.4(1)

Table 3. Equal error rate of each classifier (%)

Classifier S[1] S[2] S[3] S[4] S[5]

MSM 94.3 90.75 97.9 98.75 98.9

CMSM-1 88.5 96.1 98.7 99.25 99.1

CMSM-2 91.5 98.05 99.1 99.4 99.25

CMSM-5 92.4 98.05 99.15 99.2 99.05

CMSM-10 91.95 97.95 99.1 99.05 98.75

OMSM 94.9 96.35 98.85 99.15 99.35

Table 4. Recognition performance(%).
Similarity S[n′] is defined in Sec. 2.2

Classifier S[1] S[2] S[3] S[4] S[5]

MSM 45.9 2.8 0.8 0.3 0.4

CMSM-1 4.5 1.1 0.3 0.1 0.1

CMSM-2 3.2 0.7 0.2 0.2 0.2

CMSM-5 2.9 0.6 0.3 0.2 0.3

CMSM-10 3.1 0.6 0.3 0.3 0.4

OMSM 2.1 1.1 0.4 0.3 0.3

Table 5. Equal Error Rate (%)

3.4 Classification of 100 apples using ensemble learning

We evaluated the effectiveness of the ensemble classification using four kinds of
features. In this experiment, we used MSM,CMSM and OMSM. The experimen-
tal conditions were as described above.

Results and discussion:
Table 4 and Table 5 show the performances of all the methods. In the ensemble
classification framework, all the performances were largely improved in compar-
ison with using only a single feature. The best recognition rates were 98.9% by
MSM, 99.4% by CMSM and 99.35% by OMSM. Especially the improvements of
EER were particularly notable.

In addition, the performances were better as the number n of the canonical
angles increases. This tendency is not seen in the experiment using a single fea-
ture. This implies that the ensemble classification well derived the effectiveness
of using multiple canonical angles.

4 Conclusion

In this paper we have proposed a method to classify 3D objects with similar
appearances. We considered the classification of one hundred apples as a concrete
task. To tackle this challenging task, we used three types of feature of shape,
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texture and color type as input vectors for each of the MSM-based classifiers.
The results of classification from all the MSM-based methods were combined in
the the ensemble learning framework. The effectiveness of the proposed method
was demonstrated through the results of the evaluation experiments using 100
apples. In future works, we will evaluate the performance of our method by using
larger data sets to estimate the limitations of classification ability of MSM-based
methods.
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