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Abstract. In this paper, we propose a new type of local binary pattern
(LBP)-based feature, called Rotation Invariant Co-occurrence among ad-
jacent LBPs (RIC-LBP), which simultaneously has characteristics of ro-
tation invariance and a high descriptive ability. LBP was originally de-
signed as a texture description for a local region, called a micropattern,
and has been extended to various types of LBP-based features. In this
paper, we focus on Co-occurrence among Adjacent LBPs (CoALBP).
Our proposed feature is enabled by introducing the concept of rotation
equivalence class to CoALBP. The validity of the proposed feature is
clearly demonstrated through comparisons with various state-of-the-art
LBP-based features in experiments using two public datasets, namely,
the HEp-2 cell dataset and the UIUC texture database.

1 Introduction

The Local Binary Pattern (LBP) histogram has recently attracted much atten-
tion in the area of image recognition. The basic idea behind the LBP histogram
is to represent an entire image as a histogram of numerous LBPs, with each LBP
extracted from a local region of the image. Many types of LBP-based features
[1–5] have been proposed as extensions of the original LBP.

In this paper, we propose a new type of LBP-based feature, which is in-
variant to rotation of an input image. The proposed feature is an extension of
Co-occurrence among Adjacent LBPs (CoALBP) [6], which is an LBP-based
feature with a higher descriptive ability than the original LBP. LBP was origi-
nally designed as a texture description for a local region, called a micropattern,
which consists of binary patterns that represent the magnitude relation between
the center pixel of a local region and its neighboring pixels. LBP is obtained by
thresholding the image intensity of the surrounding pixels with that of the center
pixel. To obtain an LBP histogram feature for use in classification, the binary
patterns are converted to decimal numbers as labels, and then a histogram is
generated from the labels of all the local regions of an entire image. The main
advantage of LBP is its invariance to uniform changes in image intensity over an
entire image, making it robust against changes in illumination. This is because
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θ = 0 θ = π/4 θ = π/2 θ = 3π/4

Fig. 1. Example of rotation equivalence class of LBP pairs. In this figure, each circle
indicates one LBP.

LBP considers only the magnitude relation between the center and neighboring
pixel intensities. Owing to this characteristic, LBP has become a standard fea-
ture for texture recognition, face recognition, and facial expression analysis [1,
5].

To enhance the descriptive ability of LBP, the feature has been extended
to CoALBP by introducing the concept of co-occurrence among LBPs so as to
extract information related to the more global structures of the input image [6].
However, the CoALBP feature can vary significantly depending on the orienta-
tion of the target object. When, for instance, classifying several types of cells
with complicated textures, rotation invariance is essential. This is because the
orientation of each cell is not relevant to its classification. One could address
this problem by preparing all possible LBPs in advance. However, this solution
would entail a large memory requirement (to hold the reference patterns) high
computational cost.

Several LBP-based features with rotation invariance have already been pro-
posed. They are categorized into two types. The first type focuses on invariance
to local rotation of an input image. For example, LBPri and LBPriu2 [4] obtain
invariance to local rotation by introducing the concept of rotation equivalence
class. The second type focuses on invariance to global rotation. The LBP-HF
feature is included in this type. It attains global rotation invariance by applying
the discrete Fourier transform to a feature vector of an LBP histogram [7]. Both
types can extract distinctive features from an image with rotations. However,
these rotation invariant features lack descriptive ability, because they are basi-
cally the local features extracted from only micro patterns, without consideration
of the relations among micropatterns.

To overcome the problem of low descriptive ability of conventional rotation
invariant LBPs, we incorporate the concept of rotation equivalence class into
CoALBP. Fig.1 shows an example of the rotation equivalence class of CoALBPs.
In this case, we consider that all CoALBPs corresponding to a different angle θ
have the same value. Nevertheless, finding such LBP pairs is difficult since the
number of possible LBP combinations is huge. To solve this problem, we auto-
matically detect pairs with the same CoALBP value by using a computational
algorithm. We call this feature Rotation Invariant Co-occurrence among adja-
cent LBPs (RIC-LBP). RIC-LBP can simultaneously provide a high descriptive
ability and invariance to image rotation. The core idea of RIC-LBP is simple
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Fig. 2. Flow to obtain LBP from a local region. In this example, the intensity of the
center pixel is 5 and those of its neighboring pixels are 2, 4, 7 and 9. Thus, the binary
pattern is “0011” and LBP (r) = 3.

yet effective. The validity of RIC-LBP is demonstrated by comparing various
state-of-the-art LBP-based features through the experiments using two public
datasets, the HEp-2 cell dataset and the UIUC texture database.

The remainder of this paper is organized as follows. In Section 2, we briefly
review LBP and co-occurrence among adjacent LBPs. In Section 3, we describe
how to impart rotation invariance to CoALBPs. We also explain the RIC-LBP
process. In Section 4, we demonstrate the validity of the proposed feature by
examining the results of experiments in cell classification and texture recognition
using public databases. In the final section, we present our conclusions.

2 LBP and co-occurrence of adjacent LBPs

2.1 LBP

LBP[3] is an operator that describes a local region as a binary pattern obtained
by thresholding the difference between a center pixel and its neighboring pixels
in a local region, as shown in Fig.2. The binary pattern in LBP represents the
magnitude relation of intensities, a quantity which is invariant amid uniform
changes of image intensity over an entire image. Therefore, LBP is robust against
changes in illumination among image patterns, a difficulty commonly found in
face and texture images.

Let I be an image intensity and r = (x, y) be a position vector in I. LBP at
r is defined as follows:

LBP (r) =
N−1∑
i=0

sgn(I(r+∆si)− I(r))2i, (1)

sgn(x) =

{
1, if x ≥ 0
0, otherwise

, (2)

where N is the number of neighbor pixels. ∆si is displacement vector from the
center pixel to neighboring pixels given by ∆si = (s cos(θi), s sin(θi)), where
θi =

2π
N i and s is a scale parameter of LBP.

2.2 Co-occurrence among adjacent LBPs

The original LBP does not preserve structural information among binary pat-
terns, even though such information may be characteristic of an image. In order
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θ = 0 θ = π/4 θ = π/2 θ = 3π/4

Fig. 3. Configurations of an LBP pair.

to keep such structural information, we utilize the CoALBP as represented by
LBP pair [6]. The set of CoALBPs over a whole image is converted to a CoALBP
histogram feature. CoALBP (LBP pair) at r is written as follows:

P (r,∆r) = (LBP (r), LBP (r+∆r)), (3)

where ∆r = (r cos θ, r sin θ) is a displacement vector between an LBP pair. The
value of r is an interval between an LBP pair, and θ = 0, π/4, π/2, 3π/4. Fig.3
illustrates the configurations of an LBP pair.

While the LBP produces 2N (= NP ) different output values, the number of
possible combination patterns of an LBP pair N2

P ×4 is significantly greater than
that of the LBP itself. That is, an LBP pair can represent a far greater variety of
image patterns than an LBP. The histogram feature generated from these LBP
pairs contains information on the structure of the image, since it describes the
frequency of LBP pairs that are located near each other.

3 Rotation invariant co-occurrence among adjacent LBPs

3.1 Rotation equivalence class of LBP pair

To simultaneously achieve a high descriptive ability and rotation invariance, we
incorporate rotation invariance into CoALBP as represented by an LBP pair.
The simplest way to embed rotation invariance is to attach a rotation invariant
label to each LBP pair. For example, in Fig.4 there are two types of LBP pairs,
each having four configurations. The same label is attached to each of these eight
LBP pairs because each LBP pair is equal to the others in terms of rotation. This
relation among LBP pairs is called rotation equivalence; and a set of rotation
equivalent LBP pairs is called a rotation equivalence class of LBP pairs. Thus,
the LBP pairs in Fig.4 constitute one rotation equivalence class.

As shown in Fig.4, the upper LBP pairs are equivalent to LBP pairs that
have been rotated 180 degrees from the lower LBP pairs. Therefore, for finding
the rotation equivalent LBP pairs, it is necessary to consider only two cases:
(i) a case in which LBP pairs of θ = 0, π/4, π/2, 3π/4 have rotation equivalence
and (ii) a case in which LBP pairs that are rotated by 180 degrees have rotation
equivalence.

First, in order to consider case (i), we modify the definition of LBP pair. The
modified LBP pair is written as follows:

Pθ(r,∆rθ) = (LBPθ(r), LBPθ(r+∆rθ)), (4)
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θ = 0 θ = π/4 θ = π/2 θ = 3π/4
Pθ(r,∆rθ) = ((0101)2, (0110)2)

θ = 0 θ = π/4 θ = π/2 θ = 3π/4
Pθ(r,∆rθ) = ((1001)2, (0101)2)

Fig. 4. An example of the rotation equivalence class. The same label is attached to
these LBP pairs.

LBPθ(r) =
N−1∑
i=0

sgn(I(r+∆si,θ)− I(r))2i, (5)

∆si,θ = (s cos(θi + θ), s sin(θi + θ)), (6)

where θ serves as the bias of the rotation angle in LBP. Based on the new
definition above, the LBP pair of each configuration has the same value in terms
of rotation.

Next, we consider case (ii). In this case, we use a rule that an LBP pair that is
rotated 180 degrees from Pθ(r,∆rθ) is equal to (LBPθ+π(r+∆rθ), LBPθ+π(r)).
According to this rule, we can consider that these LBP pairs have rotation
equivalence. We implement this rule by a mapping table M that has a label for
each LBP pair. The mapping table M is generated by using Algorithm 1. In
Algorithm 1, “≫” is a circular shift ; also, “i′ = i ≫ N/2” means to rotate LBP
i by 180 degree (e.g., i = (1000)2 becomes i′ = (0010)2).

By using mapping table M , we define a rotation invariant label for an LBP
pair at r (i.e., RIC-LBP) as follows:

PRI
θ (r) = M(Pθ(r,∆rθ)). (7)

Finally, an RIC-LBP histogram is generated from PRI
θ (r) for the entire image.

Since the number of the rotation equivalence classes for the LBP pairs deter-
mines the dimension of the RIC-LBP histogram vector, we describe this in more
detail as follows. The number of possible LBP pairs is N2

P × 4. By considering
case (i), the number of possible patterns becomes N2

P . Moreover, by considering
case (ii), the number of possible patterns is halved. Here, we consider a sym-
metric LBP pair as shown in Fig.5; the number of symmetric LBP pairs is NP .
Therefore, the number of rotation equivalence classes is NP (NP + 1)/2.
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Algorithm 1 Calculate a mapping table M .

Input: N // number of neighbor pixels.
Output: M // mapping table (NP ×NP matrix)

id ⇐ 1, NP ⇐ 2N

for i = 0, · · · , NP − 1 do
for j = 0, · · · , NP − 1 do

if M(i, j) = null then
i′ ⇐ i ≫ N/2, j′ ⇐ j ≫ N/2
M(i, j) ⇐ id, M(j′, i′) ⇐ id
id ⇐ id+ 1

end if
end for

end for

Fig. 5. Examples of symmetric LBP pair.

3.2 Process flow of generating RIC-LBP histogram from an image

We explain how to generate the RIC-LBP histogram from an input image with
Eq.(4) and mapping table M .

First, we explain how Eq.(4) and mapping table M work using Fig.6. The
example image has four LBPs (Fig.6(a)). The image is decomposed into six LBP
pairs (Fig.6(b)). We then have two sets of LBP pairs that have rotation equiva-
lence as indicated by arrows in Fig.6(b). By Eq.(4), the effect of configurations
is removed from these LBP pairs, as shown in Fig.6(c). By utilizing mapping
table M , these pairs are arranged as shown in Fig.6(d). As we can see, LBP
pairs in Fig.6(d) are clearly rotation invariant. By such a process, we obtain an
RIC-LBP histogram of the example image, as shown in Fig.6(e).

(b)!(a)!

Rotation equivalent!

Rotation 
equivalent!

 2 !    2 !

(c)! (e)!(d)!

 1      1!

Fig. 6. An example of generating RIC-LBP. (a) Example image. (b) LBP pairs of the
example image. (c) Labeling of each LBP pair using Eq.(4). (d) Re-labeling of each
LBP pair by applying the mapping table M . (e) RIC-LBP histogram.
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(a)! (b)! (c)!

…… …

Fig. 7. Process flow of RIC-LBP. (a) Input LBP image. (b) Histogram of Pθ(r,∆rθ).
(c) Histogram of PRI

θ (r).

Next, we explain the overall process flow to obtain a RIC-LBP histogram
of an image using Fig.7. Firstly, compute LBPθ(r) at every pixel r through-
out the entire input image (Fig.7(a)). Next, compute a histogram of Pθ(r,∆rθ)
(Fig.7(b)). Finally, combine the histogram using mapping table M and obtain a
histogram of PRI

θ (r) (Fig.7(c)). Mapping table M is calculated offline. The final
histogram is NP (NP + 1)/2 dimensional vector and is applied to a classifier.

4 Experiments

To evaluate the effectiveness of RIC-LBP, we conducted two types of experi-
ments. The first experiment is for HEp-2 cells classification, an important task
to support autoimmune disease diagnosis. Experimental conditions and results
are presented in Section 4.1. The second experiment is to apply RIC-LBP to
compare its performance relative to other LBP features in general texture recog-
nition, which is described in Section 4.2.

4.1 HEp-2 cells classification

Setup. In this experiment, we used the HEp-2 cell dataset from the classifica-
tion contest at ICPR 2012 [8]. The dataset contains six kinds of antinuclear an-
tibody (ANA) patterns of HEp-2 cell images: homogeneous, fine speckled, coarse
speckled, centromere, cytoplasmatic, and nucleolar, as shown in Fig.8. The total
number of images in the dataset is 648. The images are of various sizes.

We employed the leave-one-out protocol for evaluation; the correct rate is
reported as our experimental result. The parameters of RIC-LBP were set as
follows. The radius of LBP was set to s = 1, 2, 4 pixels and the intervals of
LBP pairs were set to r = 2, 4, 8 pixels. Then, the features extracted by each
parameter were combined into a final proposed feature vector with dimension
of 408 (=136 × 3). The parameters of other methods were also set to produce
optimal performance. For classification, the linear SVM was used [9].

Result. First, we show the effectiveness of the proposed feature comparing with
various conventional LBP histograms. The baseline result for the original LBP
histogram was 92.93% (Fig.9(a)). When we applied the method with rotation
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homogeneous
#=150, size=71×92

fine speckled
#=94, size=90×112

coarse speckled
#=109, size=83×76

centromere
#=102, size=69×74

cytoplasmatic
#=58, size=132×155

nucleolar
#=208, size=96×72

Fig. 8. Example images in Hep-2 cell dataset. # is the number of images of each
class.“size” is the size of the displayed image; other images not displayed have different
sizes.
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Fig. 9. Performance results. (a) LBP histogram, (b) rotation invariant LBP histogram,
(c) LBP pair histogram (CoALBP), (d) rotation invariant LBP pair histogram (RIC-
LBP, proposed).

invariance, the correct rate rose to 96.26% (Fig.9(b)). The co-occurrence of adja-
cent LBPs (i.e. CoALBP) achieved a performance of 96.53% (Fig.9(c)). When we
used the proposed RIC-LBP, the performance was further improved to 98.20%
(Fig.9(d)). Finally, the proposed method significantly improved the performance
of the original LBP by more than 5%. This result demonstrates the effectiveness
of both the high descriptive ability of the CoALBPs and the rotation invariance
in cell classification.

Next, we compare the results of RIC-LBP with those of other rotation in-
variant LBP features, as shown in Table 1. As apparent with the experimental
results, RIC-LBP outperforms the other methods. These results confirm the
significant advantage of RIC-LBP over the conventional methods, especially be-
cause the proposed method has not only rotation invariance, but also a high
descriptive ability due to CoALBPs.
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Table 1. Performance results in HEp-2 cells classification.

Method Correct Rate(%)

LBPri [4] 96.26
LBPriu2[4] 76.67
LBP-HF [7] 97.23

RIC-LBP (Proposed) 98.20

4.2 Texture recognition

bark1 floor1 nkit

wall water wood1

Fig. 10. Example images in UIUC texture database.

Setup. We evaluated RIC-LBP for texture recognition using the UIUC texture
database [10]. The database contains texture images of 25 classes. Each class
consists of 40 images of size 640× 480 pixels. Some examples of texture images
are shown in Fig.10. The images of each class were randomly split into training
and testing sets. This division was repeated 20 times to produce 20 evaluation
sets. The average of all correct rates over 20 iterations was defined as the final
rate. To increase the difficulty of recognition, we also rotated the texture images
by various angles. The parameters of the LBP features were set to the same
setting as in the above mentioned experiment.

Results. Experimental results are shown in Table 2. The performance of RIC-
LBP was better than that of almost all the other conventional LBP methods,
such as LBPri and LBPriu2. However, the LBP-HF method, which utilizes the
discrete Fourier transform, achieved better performance than RIC-LBP. This is
because RIC-LBP considers rotation at local regions, whereas LBP-HF considers
rotation of the entire image. LBP-HF is thus better suited for this type of texture
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Table 2. Performance results in texture recognition.

Method Correct Rate(%)

LBP[3] 82.55
LBPri [4] 83.51
LBPriu2[4] 57.33
CoALBP [6] 81.49
LBP-HF [7] 93.60

RIC-LBP (Proposed) 88.27

dataset, which contains global rotation equivalence images. This experimental
result indicates that the performance of RIC-LBP for the texture dataset may
be further improved by also considering rotation of the entire image by using a
method such as the discrete Fourier transform.

5 Conclusion

In this paper, we proposed RIC-LBP, a new type of LBP-based feature that si-
multaneously has the characteristics of rotation invariance and high descriptive
ability. Conventional rotation invariant LBP-based features lack descriptive abil-
ity. To solve this problem, we focused on CoALBP, which is one effective exten-
sion of LBP. Compared with the original LBP, CoALBP has higher descriptive
ability since it considers the global relation among LBPs. The proposed RIC-
LBP obtained rotation invariance by introducing rotation equivalence class to
the CoALBP. The validity of RIC-LBP, in particular, its robustness against local
rotations due to transformations of target objects, was confirmed through classi-
fication experiments with cells and textures using public databases, specifically
the HEp-2 cell dataset and the UIUC texture database.
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